
Smart Contract Code

Review And Security

Analysis Report

Customer: CREO

Date: 03/04/2024



We express our gratitude to the CREO team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Creo Engine is a private bridge solution.

Platform: Ethereum

Language: Solidity

Tags: ERC20, Bridge

Timeline: 11/03/2024 - 03/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/creoenginecto/creobridge

Commit c7d6502

2

https://hackenio.cc/sc_methodology
https://github.com/hknio/creo-bridge-solana-116e52c576c681f79c3d


Audit Summary

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

0 0 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 0

3



This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for CREO

Audited By Turgay Arda Usman

Approved By Grzegorz Trawinski

Website -

Changelog 15/03/2024 - Preliminary Report && 02/04/2024 Final Report

4



Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 9

Disclaimers 12

Appendix 1. Severity Definitions 13

Appendix 2. Scope 14



System Overview

Creo is a private bridge with the following contracts:

CreoEngine  — simple ERC-20 token burnable token that mints all initial supply to a deployer.

Additional minting is not allowed.

It has the following attributes:

Decimals: 18

BridgeAssist — a contract that creates incoming and outgoing transaction instances for the bridge. It

also handles fees. 

Privileged roles

An admin can change the bridge parameters and withdraw funds from the bridge. Admins should

be able to add more admins. The role can also be renounced and transferred to another wallet.

There can be multiple relayers. A relayer can prove that the bridge operation has been initiated

and funds have been locked on the sending chain. The role can be granted and revoked by

admins.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided .

Technical description is  provided.

Code quality

The total Code Quality score is  10 out of 10.

The code  follows best practices and style guides

The development environment is configured.

Test coverage

Code coverage of the project is 100.00% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative cases coverage is adequate .

Interactions by several users are  tested thoroughly.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 0 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

The provided documentation states that the system will allow Multicall, which allows users to

provide integration via ERC2771. ERC2711 contains a multicall issue which allows a malicious user

to send transactions by using any role or user. Since the audit scope is a part of a bigger system

this vulnerability can harm the system.

The exchange rates used in the system are being determined by the manager, which creates the

possibility of these rates being outdated. This can prevent users benefitting from the latest rates.

8



Findings

Vulnerability Details

Observation Details

F-2024-1467 - Missing Zero Address Violation - Info

Description: In Solidity, the Ethereum address

0x0000000000000000000000000000000000000000 is known as the

“zero address”. This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. 

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.  

For instance, consider a contract that includes a function to change its

owner. This function is crucial, as it determines who has administrative

access. However, if this function lacks proper validation checks, it might

inadvertently permit the setting of the owner to the zero address.

Consequently, the administrative functions will become unusable.

The constructor  and  setLocked()  functions are lack of missing zero

address validation

Assets:
CreoEngine.sol [https://github.com/GotBit/creo-bridge-solana]

Status: Fixed

Recommendations

Recommendation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Remediation (Commit:  e9fc4eb): The zero address checks implemented

as suggested.

9

https://portal.hacken.io/App/Projects/Details/400bab0b-78f2-4368-94e1-775b9b4e35b7/Finding/993e78e0-ee67-40db-a483-0bb828d5f946


F-2024-1468 - Checks Effects Interactions Pattern Violation - Info

Description: It was identified that BridgeAssist.sol contract has an instance of

Checks-Effects-Interactions (CEI) pattern violation, where state variables

are updated after the external calls to the token contract. As explained in

Solidity Security Considerations, it is best practice to follow the CEI

pattern while interacting with external contracts to avoid reentrancy-

related issues. However, no reentrancy vulnerability was identified during

the security assessment. The finding is reported as a deviation from

leading security practices.

function send(

uint256 amount,

string memory toUser, // marked as memory to prevent "stack too deep

"

string calldata toChain

) external whenNotPaused {

...

_receiveTokens(msg.sender, amount);

...

if (currentFee != 0) _dispenseTokens(feeWallet, currentFee * exchang

eRate);

transactions[msg.sender].push(

Transaction({

fromUser: msg.sender,

toUser: toUser,

amount: amount / exchangeRate - currentFee, // @audit-ok this number

is actually different than the calculated amount (CHECK)

// No logic of the system relies on this timestamp,

// it's only needed for displaying on the frontend

timestamp: block.timestamp,

fromChain: CURRENT_CHAIN(),

toChain: toChain,

nonce: nonce++,

block: block.number

})

);

}

Assets:
BridgeAssist.sol [https://github.com/GotBit/creo-bridge-solana]

Status: Fixed

Recommendations

Recommendation: It is recommended to follow the CEI pattern when interacting with external

contracts.

Remediation (Commit:  e9fc4eb):  The function is re-implmeneted

according to the Checks-Effects-Interaction pattern.

10

https://portal.hacken.io/App/Projects/Details/400bab0b-78f2-4368-94e1-775b9b4e35b7/Finding/e4b94ffd-cb7f-42c0-ba53-20e6651fd48e
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations


F-2024-1535 - EIP712 signatures are not single use and not time

limitted - Info

Description: The BridgeAssist.sol contract uses signatures to verify transactions.

However, it does not properly adopt the EIP712 standard for creating and

verifying these signatures. The relevant code is as follows: 

function _hashTransaction(FulfillTx memory transaction) private view

returns (bytes32){

return

_hashTypedDataV4(

keccak256(

abi.encode(

FULFILL_TX_TYPEHASH,

transaction.amount,

keccak256(abi.encodePacked(transaction.fromUser)),

transaction.toUser,

keccak256(abi.encodePacked(transaction.fromChain)),

transaction.nonce

)

)

);

}

However, it was identified that the signed message does not include

deadline to prevent signature reuse. Thus, every observed on-chain

signature can be replayed. Thus, the risk of signature replay is limited as

firstly the relayer private key must be disclosed in prior. Alternatively, a

signed message must be disclosed off-chain.

Assets:
BridgeAssist.sol [https://github.com/GotBit/creo-bridge-solana]

Status: Mitigated

Recommendations

Recommendation: It is recommended to add both the deadline  parameter to the signed

message in the EIP712 implementation. The deadline parameter should be

short enough to allow trigger the transaction and disallow using it after

reasonable period. The nonce parameter should be a number tracked by

the solution and incremented each time signature is correctly used.

Remediation (Mitigated): The platform informed us that the

implementation currently does not need a deadline parameter

11

https://portal.hacken.io/App/Projects/Details/400bab0b-78f2-4368-94e1-775b9b4e35b7/Finding/a2927e6e-7fd7-469f-a196-16838fea9c3d


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

12



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

13

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/creoenginecto/creobridge

Commit c7d6502

Whitepaper -

Requirements Provided as a File

Technical Requirements Provided as a File

Contracts in Scope

BridgeAssist.sol

CreoEngine.sol

14

https://github.com/creoenginecto/creobridge



