
Smart Contract Code

Review And Security

Analysis Report

Customer: Grace Protocol

Date: 29.04.24

We express our gratitude to the Grace Protocol team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

Grace is an L2-first cross-margin lending protocol that fairly distributes losses if they occur, making it

resilient to oracle manipulation, volatility and exploits.

Platform: EVM

Language: Solidity

Tags: Lending, ERC20, Oracle

Timeline: 12/04/2024 - 25/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/nourharidy/grace-protocol

Commit bb62016

2

https://hackenio.cc/sc_methodology
https://github.com/nourharidy/grace-protocol

Audit Summary

10/10 9/10 63% 6/10
Security Score Code quality score Test coverage Documentation quality score

Total 8/10
The system users should acknowledge all the risks summed up in the risks section of the report

5 3 2 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 2

Low 2

Vulnerability Status

F-2024-1736 - Chainlink’s latestRoundData might return stale or incorrect results Accepted

F-2024-1787 - Privileged roles should follow two step ownership transfer pattern Accepted

F-2024-1629 - The usage of the precompile ecrecover can lead to signature mailability Fixed

F-2024-1747 - Use of transfer() instead of call() to send native tokens Fixed

F-2024-1751 - Missing call to moveDelegates in GTR burn Fixed

3

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/9bfce525-7f05-47c9-99c6-adbc9c5392d8
https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/1f95a07d-b10b-48ed-baa2-942cbd553089
https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/16576273-c5dc-4706-8365-232d556d986b
https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/e4cd8769-fa58-4531-93aa-1089a1118c90
https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/6c845e47-8a3b-4d86-a508-93ea2d19cd4e

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for Grace

Protocol

Audited By David Camps Novi, Viktor Lavrenenko

Approved

By
Przemyslaw Swiatowiec

Website https://app.grace.loans

Changelog 29/04/2024 - Preliminary Report ; 16/05/24 - Final Report

4

https://app.grace.loans/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 9

Documentation Quality 9

Code Quality 9

Test Coverage 9

Security Score 9

Summary 9

Risks 10

Findings 11

Vulnerability Details 11

Observation Details 23

Disclaimers 32

Appendix 1. Severity Definitions 33

Appendix 2. Scope 34

System Overview

Grace is an L2-first cross-margin lending protocol that fairly distributes losses if they occur, with the

following contracts:

BorrowController — Handles borrowing related logic and calculations.

Pool —Pools are deployed for each borrowable token via the core contract only. Pool contracts are

the user-facing entry-points for users looking for debt-related operations such as lending and

borrowing.

Collateral — Collaterals are deployed for each token used as collateral via the core contract only.

Collateral contracts are the user-facing entry-points for users looking for collateral-related operations

such as depositing or withdrawing collateral.

Oracle — The Oracle contract provides the core with prices of all collateral and pool tokens.

RateProvider — The rate provider manages the interest rate model contracts for each pool and fee

rate model for each collateral.

Vault — Vaults allow Pool share token holders to deposit their shares into the vault in order to earn

GTR rewards.

VaultFactory — The factory is used by the owner to deploy new vaults. It is also used by the owner in

order to assign different reward weights for each vault.

Reserve —The reserve acts as the feeRecipient of the core contract. It receives all interest and

collateral fees generated by the protocol.

Core — The core contract is a monolithic contract that contains hook functions.

GTR — The token used to pay for interests.

PoolDeployer — Deploys pool contracts.

CollateralDeployer — Deploys collateral contracts.

Privileged roles

The BorrowController contract has the following roles:

The owner, which can:

set a new owner

set a guardian

forbid the contracts

choose the allowed contracts

suspend the borrowing for a specific pool

set daily borrow limit in USD

The guardian, which can:

pause the borrowing for a specific pool

The Core contract has the following roles:

The owner, which can:

6

set a new owner

set the address of the Oracle

set the address of the BorrowController

set the address of the RateProvider

set the address of the PoolDeployer

set the address of the CollateralDeployer

set the address of the fee receiver

set liquidation incentive in bps

set the maximum liquidation incentive in USD

set the BadDebtCollateralThresholdUsd

set the WriteOff incentive Bps

deploy a new pool

set a pool deposit cap

deploy a new collateral

set a collateral factor

set a collateral cap in USD

pull tokens from the Core contract

pull tokens from the Pool contract

pull tokens from the Collateral contract

The GTR contract has the following roles:

The operator, which can:

set minters

set a new operator

The Oracle contract has the following roles:

The owner, which can:

set a new owner

set an address of the collateral feed

set an address of the pool feed

set the pool fixed price

set the bps per week

The Pool contract has the following roles:

The core, which can pull ERC20 tokens from the pool

The RateProvider contract has the following roles:

The owner, which can:

set a new owner

set a default interest rate model

set a default collateral fee model

set an interest rate model

set a collateral fee model

The Reserve contract has the following roles:

The owner, which can:

set a new owner

request and execute allowance

The VaultFactory contract has the following roles:

The operator, which can:

create new vaults

set weights

set a new operator

set a reward budget

7

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 6 out of 10.

Functional requirements are limited.

Missing roles description.

Functional requirements are superficial.

The technical description is not complete.

Missing NatSpec.

Technical specifications are not provided.

Code quality

The total Code Quality score is 9 out of 10.

Some best practices are followed: F-2024-1753, F-2024-1745, F-2024-1762.

The development environment is configured.

Test coverage

Code coverage of the project is 63% (branch coverage).

Deployment and basic user interactions are not covered with tests.

Negative cases coverage is missed.

Interactions by several users are not tested thoroughly.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 2 medium, and 2 low severity issues,

leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 8. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

Iterating over a dynamic array populated with custom length can lead to gas limit denial of

service if the number of elements goes out of control. This scenario is possible in such as

Core::writeOff, where several loops take place.

The ERC20 contract contains extra vesting logic. This may cause it to be non applicable to

generic ERC20 accepting procedures.

The potential for future account abstraction mechanisms in Ethereum could alter the behavior of

tx.origin, possibly bypassing this check.

Despite conditional usage, a malicious contract could still exploit tx.origin under certain

circumstances, such as through carefully crafted call chains.

The system benefits different uint types, conversions and calculations between these different

types may lead to unexpected results due to limitations.

Users should be aware that the fee the system charges can change over time.

The GTR does not have a maximum supply, only limited to 2**96. Given this limit is reached,

functions that require a token minting will revert.

The system allows any token to be used. However, the development team stated that supported

tokens will be pre-approved to ensure that they're compliant with ERC20, do not introduce any

reentrancy risk and are non-rebasing.

The project utilizes Solidity version 0.8.20 or higher, which includes the introduction of the

PUSHO (0x5f) opcode. This opcode is currently supported on the Ethereum mainnet but may not

be universally supported across other blockchain networks. Consequently, deploying the

contract on chains other than the Ethereum mainnet, such as certain Layer 2 (L2) chains or

alternative networks, might lead to compatibility issues or execution errors due to the lack of

support for the PUSHO opcode. In scenarios where deployment on various chains is anticipated,

selecting an appropriate Ethereum Virtual Machine (EVM) version that is widely supported across

these networks is crucial to avoid potential operational disruptions or deployment failures.

The function Reserve::requestAllowance allows to override the allowanceRequest, which

may result in undesired behavior.

The protocol interacts with external, non-trusted, out-of-scope contracts.

The project's contracts don't implement the emergency stop pattern, which might lead to

problems in the future.

The Vault contract sets an unlimited allowance for the Pool to use its asset tokens. It creates risks

and can lead to unexpected behavior.

The owner of the Core contract can pull stuck ERC20 tokens from the Core, Pool and

Collateral contracts, which creates a risk of highly permissive role access. It is recommended

to use a MultiSignature wallet.

In the case that an oracle stops providing reliable token prices, the system will be at risk for a

particular amount of time, until a new oracle is setup. The team implemented several measures to

mitigate the scenario, explained in the finding F-2024-1736 that should be reviewed.

Zero address validation is handled off-chain. However, it can lead to problems during the direct

interaction with the protocol.

9

Findings

Vulnerability Details

F-2024-1629 - The usage of the precompile ecrecover can lead to

signature mailability - Medium

Description: The functions GTR::delegateBySig(), GTR::permit() ,

Collateral::permit(), Pool::permit() and

Pool::permitBorrow() are found to be vulnerable to a signature

malleability issue. This vulnerability stems from the function's inability to

discern between legitimately unique signatures and those that have been

manipulated but are still considered valid by the Ethereum blockchain's

signature verification standards. By exploiting this flaw, one of the users

can create signatures that will be accepted by the system, enabling

unauthorized and repetitive transactions. The vulnerable pieces of code

can be found below:

GTR:delegateBySig()

function delegateBySig(address delegatee, uint nonce, uint expiry, u

int8 v, bytes32 r, bytes32 s) public {

bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, kecc

ak256(bytes(name)), getChainId(), address(this)));

bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, deleg

atee, nonce, expiry));

bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSepara

tor, structHash));

address signatory = ecrecover(digest, v, r, s);

require(signatory != address(0), "GTR::delegateBySig: invalid signat

ure");

require(nonce == nonces[signatory]++, "GTR::delegateBySig: invalid n

once");

require(block.timestamp <= expiry, "GTR::delegateBySig: signature ex

pired");

return _delegate(signatory, delegatee);

}

GTR::permit()

function permit(address owner, address spender, uint rawAmount, uint

deadline, uint8 v, bytes32 r, bytes32 s) external {

uint96 amount;

if (rawAmount == type(uint).max) {

amount = type(uint96).max;

} else {

amount = safe96(rawAmount, "GTR::permit: amount exceeds 96 bits");

}

bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, kecc

ak256(bytes(name)), getChainId(), address(this)));

bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, sp

ender, rawAmount, nonces[owner]++, deadline));

bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSepara

tor, structHash));

address signatory = ecrecover(digest, v, r, s);

require(signatory != address(0), "GTR::permit: invalid signature");

require(signatory == owner, "GTR::permit: unauthorized");

require(block.timestamp <= deadline, "GTR::permit: signature expired

");

10

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/16576273-c5dc-4706-8365-232d556d986b

allowances[owner][spender] = amount;

emit Approval(owner, spender, amount);

}

Collateral::permit()

function permit(address owner, address spender, uint256 shares, uint

256 deadline, uint8 v, bytes32 r, bytes32 s) public {

require(deadline >= block.timestamp, "Collateral: EXPIRED");

bytes32 digest = keccak256(

abi.encodePacked(

"\x19\x01",

DOMAIN_SEPARATOR,

keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, shares, nonces

[owner]++, deadline))

)

);

address recoveredAddress = ecrecover(digest, v, r, s);

require(recoveredAddress != address(0) && recoveredAddress == owner,

"Collateral: INVALID_SIGNATURE");

allowance[owner][spender] = shares;

emit Approval(owner, spender, shares);

}

Pool::permit()

function permit(address owner, address spender, uint value, uint dea

dline, uint8 v, bytes32 r, bytes32 s) external {

require(deadline >= block.timestamp, 'permitExpired');

bytes32 digest = keccak256(

abi.encodePacked(

'\x19\x01',

DOMAIN_SEPARATOR,

keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[

owner]++, deadline))

)

);

address recoveredAddress = ecrecover(digest, v, r, s);

require(recoveredAddress != address(0) && recoveredAddress == owner,

'Pool: INVALID_SIGNATURE');

allowance[owner][spender] = value;

emit Approval(owner, spender, value);

}

and

Pool::permitBorrow()

function permitBorrow(address owner, address spender, uint value, ui

nt deadline, uint8 v, bytes32 r, bytes32 s) external {

require(deadline >= block.timestamp, 'permitExpired');

bytes32 digest = keccak256(

abi.encodePacked(

'\x19\x01',

DOMAIN_SEPARATOR,

keccak256(abi.encode(PERMIT_BORROW_TYPEHASH, owner, spender, value,

nonces[owner]++, deadline))

)

);

address recoveredAddress = ecrecover(digest, v, r, s);

require(recoveredAddress != address(0) && recoveredAddress == owner,

'Pool: INVALID_SIGNATURE');

borrowAllowance[owner][spender] = value;

emit BorrowApproval(owner, spender, value);

}

Assets:
Collateral.sol

11

GTR.sol

Pool.sol

Status: Fixed

Classification

Impact: 4/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Complex

Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [0-2]: 0

Complexity [0-2]: 1

Final Score: 3.3 (Medium)

Severity: Medium

Recommendations

Remediation: To enhance the security of your Solidity smart contracts and mitigate the

risk of signature malleability attacks, it is advisable to use OpenZeppelin's

ECDSA library instead of the built-in ecrecover function. The ECDSA

library provides robust and reliable signature verification, reducing the

vulnerability to replay attacks and ensuring the integrity of the contract

interactions.

Resolution: Fixed in the commit bd1216b: ecrecover() was replaced with

ECDSA.recover().

12

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol#L125-L128

F-2024-1736 - Chainlink’s latestRoundData might return stale or

incorrect results - Medium

Description: The getNormalizedPrice() function calls out to a Chainlink oracle

receiving the latestRoundData(). If there is a problem with Chainlink

starting a new round and finding consensus on the new value for the

oracle (e.g. Chainlink nodes abandon the oracle, chain congestion,

vulnerability/attacks on the chainlink system) consumers of this contract

may continue using outdated stale or incorrect data (if oracles are unable

to submit no new round is started).

function getNormalizedPrice(address token, address feed) internal vi

ew returns (uint normalizedPrice) {

(,int256 signedPrice,,,) = IChainlinkFeed(feed).latestRoundData();

uint256 price = signedPrice < 0 ? 0 : uint256(signedPrice);

uint8 feedDecimals = IChainlinkFeed(feed).decimals();

uint8 tokenDecimals = IOracleERC20(token).decimals();

if(feedDecimals + tokenDecimals <= 36) {

uint8 decimals = 36 - feedDecimals - tokenDecimals;

normalizedPrice = price * (10 ** decimals);

} else {

uint8 decimals = feedDecimals + tokenDecimals - 36;

normalizedPrice = price / 10 ** decimals;

}

}

This function is being used in the system's oracle implementation to

calculate high and low values for pools and collaterals. So any outdated

results may directly affect the system's prices.

Assets:
Oracle.sol

Status: Accepted

Classification

Impact: 5/5

Likelihood: 1/5

Exploitability: Semi-Dependent

Complexity: Simple

Likelihood [1-5]: 1

Impact [1-5]: 5

Exploitability [1-2]: 1

Complexity [0-2]: 0

Final Score: 0.7 (Low)

Severity: Medium

13

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/9bfce525-7f05-47c9-99c6-adbc9c5392d8

Recommendations

Remediation: Add checks and timeout mechanisms to make sure the acquired result is

the latest one. Given the following returned values from Chainlink's

latestRoundData():

(

/*uint80 roundID*/,

int price,

/*uint startedAt*/,

uint256 updatedAt,

/*uint80 answeredInRound*/

) = priceFeed.latestRoundData();

The following two checks should be introduced:

To prevent the usage of old values, a new parameter (e.g.

heartbeat) should be created as the desired minimum refresh date,

and compared with the returned updatedAt time. You can reach out

to the corresponding feed to get the refresh rate:

require(block.timestamp - updatedAt <= heartbeat, "Data is not fresh

");

To prevent the use of an out-of-service oracle value, only positive

values should be accepted::

require(price > 0, "Stale price");

Resolution: The finding was accepted by the Grace team with the following

information:

After careful consideration and after reading oracle contract implem

entations of many other protocols, we've decided the following:

- heartbeat will be ignored as it's less risky to use an outdated pr

ice than have no price reference at all. This is a practice followed

by Compound, Aave and Morpho who all completely ignore heartbeat val

ues.

- A 0 or negative collateral price will be returned as 0 and will no

t cause a revert. This allows liquidations and write-offs to occur w

ithout interruption

- A 0 or negative debt price will also be returned as 0. However, as

we already use the recorded high price for debt tokens, the existing

high price will continue to be used for some time and will slowly be

ramped down to 0.

Furthermore, the team implemented a couple of features to deal with

external oracles and borrowers with debt with an invalid price feed in the

commit 4135aa7

- We now also handle reverts of external feed contracts and replace

them with 0 price. This prevents feed contracts from being used to a

ttack the protocol by DoSing liquidations, collateral withdrawals, w

rite-offs, etc.

- As we continue to risk underpricing debt tokens by the oracle in t

he case of an invalid feed, borrowers who have any debt with an inva

lid price feed are forbidden from borrowing any tokens or withdrawin

g any collateral until they repay all off the debt priced by an inva

14

lid feed. This is a feature enforced in Core.onPoolBorrow() and Core

.onCollateralWithdraw()

15

F-2024-1747 - Use of transfer() instead of call() to send native

tokens - Low

Description: The project utilizes the transfer() method for sending native currency

to a recipient. However, if the recipient is a smart contract, the fixed gas

limit associated with transfer() in Solidity might prevent the transaction

from being completed.

In earlier Solidity versions, the transfer() function was favored for its

straightforwardness and built-in reentrancy guard. Yet, it has become

known for issues tied to its rigid gas ceiling of 2300.

Leveraging transfer() could inadvertently cause the transaction to

revert if the recipient contract's receive() or fallback() methods

require more than 2300 Gas for execution or if the gas price will be higher

in the future.

The usage of the transfer() method was found in the following

functions:

Vault::withdrawETH()

Pool::borrowETH()

Pool::repayETH()

Collateral::withdrawETH()

Collateral::redeemETH()

Assets:
Collateral.sol

Pool.sol

Vault.sol

Status: Fixed

Classification

Impact: 4/5

Likelihood: 1/5

Exploitability: Independent

Complexity: Simple

Likelihood [1-5]: 1

Impact [1-5]: 4

Exploitability [0-2]: 0

Complexity [0-2]: 0

16

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/e4cd8769-fa58-4531-93aa-1089a1118c90

Final Score: 2.0 (Low)

Severity: Low

Recommendations

Remediation: It is recommended to use built-in call() function instead of transfer()

to transfer native assets. This method does not impose a gas limit, it

provides greater flexibility and compatibility with contracts having more

complex business logic upon receiving the native tokens. When working

with then call() function ensure that its execution is successful by

checking the returned boolean value. It is also recommended to fallow the

Check-Effects-Interactions (CEI) pattern in every case to prevent

reentrancy issues.

Resolution: The finding was fixed in commit bd1216b: transfer calls were updated

to call with return value checked.

17

F-2024-1787 - Privileged roles should follow two step ownership

transfer pattern - Low

Description: The privileged roles: owner and operator carry numerous important

abilities for the system. However, the following functions allow the

addresses of these roles to be errantly transferred to the wrong

addresses as they do not use a two-step transfer process:

GRT::setOperator()

VaultFactory::setOperator()

BorrowController::setOwner()

Core::setOwner()

Oracle::setOwner()

RateProvider::setOwner()

Reserve::setOwner()

Assets:
GTR.sol

Status: Accepted

Classification

Impact: 3/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 2.5 (Low)

Severity: Low

Recommendations

Remediation: It is recommended to implement a two-step “push” and “pull” ownership

transfer process for privileged roles.

18

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/1f95a07d-b10b-48ed-baa2-942cbd553089

Resolution: The finding was accepted by the Grace team with the following

information:

The recommended push-pull ownership transfer pattern is

incompatible with potential future on-chain governance contracts

which would require a governance vote to be passed in order to

approve an ownership transfer.

19

F-2024-1751 - Missing call to moveDelegates in GTR burn - Info

Description: When GTR tokens are burnt via burn(), the function _moveDelegates()

should be called in order to update the delegates.

The burn() function implementation:

/**

* @notice Burn caller's tokens

* @param rawAmount The number of tokens to be burned from the caller

's balance

*/

function burn(uint rawAmount) external returns (bool) {

uint96 amount = safe96(rawAmount, "GTR::mint: amount exceeds 96 bits

");

balances[msg.sender] = sub96(balances[msg.sender], amount, "GTR::bur

n: burn amount exceeds balance");

totalSupply = safe96(totalSupply - amount, "GTR::burn: burn amount e

xceeds totalSupply");

emit Transfer(msg.sender, address(0), amount);

return true;

}

Assets:
GTR.sol

Status: Fixed

Classification

Impact: 2/5

Likelihood: 4/5

Exploitability: Semi-Dependent

Complexity: Medium

Likelihood [1-5]: 4

Impact [1-5]: 2

Exploitability [0-2]: 1

Complexity [0-2]: 1

Final Score: 2.3 (Low)

Severity: Info

Recommendations

Remediation: Perform a call to _moveDelegates when tokens are burnt.

20

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/6c845e47-8a3b-4d86-a508-93ea2d19cd4e

Resolution: The finding was fixed in commit bd1216b: a call to _moveDelegates was

introduced in token burn.

21

Observation Details

F-2024-1741 - Checks-effects-interactions pattern violation - Info

Description: When depositing funds, the checks-effects-interactions pattern behaves

differently. In such cases, the token transfers should be performed before

updating the balances. Therefore, the following functions do not comply

with the best practices for this pattern implementation.

function deposit(uint256 assets, address recipient) public lock retu

rns (uint256 shares) {

uint _lastAccrued = accrueFee();

require(core.onCollateralDeposit(recipient, assets), "beforeCollater

alDeposit");

require((shares = previewDeposit(assets)) != 0, "zeroShares");

balanceOf[recipient] += shares;

totalSupply += shares;

addToDepositors(recipient);

asset.safeTransferFrom(msg.sender, address(this), assets);

lastBalance = asset.balanceOf(address(this));

require(lastBalance >= MINIMUM_BALANCE, "minimumBalance");

emit Deposit(msg.sender, recipient, assets, shares);

updateFee(_lastAccrued);

}

The affected functions are:

src/Collateral.sol:: deposit, depositETH, mint.

src/Pool.sol:: deposit, mint, repay, repayETH.

src/Vault.sol:: depositShares.

Assets:
Collateral.sol

Status: Fixed

Recommendations

Remediation: It is recommended to update the balances after performing the token

transfer.

Resolution: The finding was fixed in commit bd1216b: a nonReentrant modifier was

added into the Vault contract's reported functions. The reported

functions from Collateral and Pool contracts are covered with the

lock nonReentrant modifier.

22

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/80133bb4-428e-4602-87a1-38f5378d3416

F-2024-1745 - Missing zero address validation - Info

Description: In Solidity, the Ethereum address

0x00 is known as the

“zero address”. This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address.

The "Missing zero address Validation" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, consider a contract that includes a function to change its

owner. This function is crucial, as it determines who has administrative

access. However, if this function lacks proper validation checks, it might

inadvertently permit the setting of the owner to the zero address.

Consequently, the administrative functions will become unusable.

Missing checks were observed in the following functions:

GTR::constructor() → _operator

GTR::setMinter() → minter_

GTR::setOperator() → operator_

Vault::constructor() → _pool, _gtr

Vault::depositShares() → recipient

Vault::depositAsset() → recipient

Vault::depositETH() → recipient

Vault::withdrawETH() → recipient

Vault::withdrawShares() → recipient

Vault::withdrawAsset() → recipient

Vault::approve()

VaultFactory::constructor() → _gtr, _weth

Pool::constructor() → _asset, _core

Pool::deposit() → recipient

Pool::transfer() → recipient

Pool::approve() → spender

Pool::transferFrom() → recipient

Collateral::constructor() → _asset, _core

Collateral::deposit() → recipient

Collateral::depositETH() → recipient

Collateral::mint() → recipient

Collateral::withdraw() → receiver

Collateral::withdrawETH() → receiver

Collateral::redeem() → receiver

Collateral::redeemETH() → owner

Collateral::seize() → to

Collateral::pull() →dst

BorrowController::setOwner() → _owner

23

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/5cf7fc8a-e31f-4a5c-964c-ac20ae54047e

BorrowController::setGuardian() → _guardian

BorrowController::setContractAllowed() → contractAddress

RateProvider::setOwner() → _owner

RateProvider::setDefaultInterestRateModel() →

_defaultInterestRateModel

RateProvider::setDefaultCollateralFeeModel() →

_defaultCollateralFeeModel

RateProvider::setInterestRateModel() → pool

RateProvider::setCollateralFeeModel() → collateral

Reserve::constructor() → _gtr

Reserve::setOwner() → _owner

Assets:
BorrowController.sol

Collateral.sol

GTR.sol

Pool.sol

RateProvider.sol

Reserve.sol

Vault.sol

VaultFactory.sol

Status: Accepted

Recommendations

Remediation: Implement zero address checks for the aforementioned functions.

Resolution: Accepted with the following explanation:

We believe that this kind of address input validation should be

handled on the wallet level instead. Therefore, we won't be

validating zero address inputs on the contract level.

24

F-2024-1753 - The EIP712 domain separator is missing the version

field - Info

Description: The domain separator in GTR.sol is missing the version field defined in

EIP-712. The standard states that not all fields are mandatory but adding

them would add another layer of security for the usage of off-chain signed

messages for the protocol. The affected code can be found below:

bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(st

ring name,uint256 chainId,address verifyingContract)");

Assets:
GTR.sol

Status: Accepted

Recommendations

Remediation: It is recommended to refer to the EIP712 doc and add all of the missing

domain separator fields.

Resolution: The finding was Accepted by the Grace Protocol team:

The GTR contract address and chainId are already included and

the contract is not upgradable.

25

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/f4d339ac-7e98-4cf3-87ef-edec67b3531c
https://eips.ethereum.org/EIPS/eip-712

F-2024-1755 - Cache array length in loops to save gas - Info

Description: Several loops calculate the length of storage arrays instead of caching

such value in a memory value. As a consequence, the whole array will be

accessed as a storage reading for each iteration, saving a big amount of

gas unnecessarily.

function onPoolRepay(address recipient, uint256 amount) external ret

urns (bool) {

...

if(amount == debt) {

for (uint i = 0; i < borrowerPools[recipient].length; i++) {

...

}

Additionally, this extra amount of gas will contribute to the likelihood of

reaching the block gas limit for such operations, as reported in the Risk

section of this report.

Affected functions are:

src/Core.sol: onCollateralWithdraw, onPoolBorrow,

onPoolRepay, liquidate, writeOff.

Assets:
Core.sol

Status: Fixed

Recommendations

Remediation: It is recommended to cache the length of storage arrays during loops in

order to save gas.

Resolution: The finding was fixed in the commit bd1216b: the recommended

remediation was implemented.

26

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/5a8cf146-182c-4c39-9501-086bcf7b2b21

F-2024-1762 - Missing events emitting for critical data - Info

Description: Events for critical state changes should be emitted for tracking actions

off-chain.

Events are crucial for tracking changes on the blockchain, especially for

actions that alter significant contract states or permissions. The absence

of events in these functions means that external entities, such as user

interfaces or off-chain monitoring systems, cannot effectively track these

important changes.

It was observed that events are missing events in the following functions:

BorrowController::setOwner()

BorrowController::setGuardian()

BorrowController::setPoolBorrowPaused()

BorrowController::setForbidContracts()

BorrowController::setContractAllowed()

BorrowController::setPoolBorrowSuspended()

BorrowController::setDailyBorrowLimitUsd()

Collateral::pull()

Core::setOwner()

Core::setOracle()

Core::setBorrowController()

Core::setRateProvider()

Core::setPoolDeployer()

Core::setCollateralDeployer()

Core::setFeeDestination()

Core::setLiquidationIncentiveBps()

Core::setMaxLiquidationIncentiveUsd()

Core::setBadDebtCollateralThresholdUsd()

Core::setWriteOffIncentiveBps()

Core::setPoolDepositCap()

Core::setCollateralFactor()

Core::setCollateralCapUsd()

Core::pullFromCore()

Core::pullFromPool()

Core::pullFromCollateral()

Oracle::setOwner()

Oracle::setCollateralFeed()

Oracle::setPoolFeed()

Oracle::setPoolFixedPrice()

Oracle::setBpsPerWeek()

Pool::pull()

RateProvider::setOwner()

RateProvider::setDefaultInterestRateModel()

RateProvider::setDefaultCollateralFeeModel()

RateProvider::setInterestRateModel()

27

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/9dfe811b-d665-45a9-ae5b-b05cf4e34929

RateProvider::setCollateralFeeModel()

Reserve::setOwner()

Vault::depositShares()

Vault::depositAsset()

Vault::depositETH()

Vault::withdrawETH()

Vault::withdrawShares()

Vault::withdrawAsset()

VaultFactory::setOperator()

VaultFactory::setBudget()

Assets:
BorrowController.sol

Collateral.sol

Core.sol

Oracle.sol

Pool.sol

RateProvider.sol

Reserve.sol

Vault.sol

VaultFactory.sol

Status: Accepted

Recommendations

Remediation: Consider adding events emitting to the aforementioned functions.

Resolution: The finding was Accepted given the following explanation in commit

bd1216b:

We've only added new events for user-facing functions in the

Vault and VaultFactory. As for the onlyOwner functions, we

chose to reduce code bloat by not emitting events for these

functions as off-chain listeners can watch the owner address for

new transactions instead of watching for contract events.

28

F-2024-1779 - Lack of consistency in assets redeemed amount - Info

Description: Both redeem functions in Pool and Collateral contracts calculate

assets = previewRedeem(shares). However, only in the Pool

contract the following check is added require((assets =

previewRedeem(shares)) != 0, "zeroAssets").

This raises a concern of consistency regarding the amount of shares and

assets calculated in the aforementioned contracts, behaving differently

for cases in which the result should be rounded down.

Assets:
Collateral.sol

Pool.sol

Status: Fixed

Recommendations

Remediation: It is recommended to maintain a consistency, applying require((assets

= previewRedeem(shares)) != 0, "zeroAssets") in all cases

necessary when rounding down.

Resolution: The observation was fixed in the commit bd1216b by applying the

recommended check and updating the rounding direction.

29

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/c2d11262-c74b-4231-b78c-f04f158a5e98

F-2024-1784 - Missing feed address check may result in undesired

price calculations - Info

Description: The functions getCollateralPriceMantissa,

getDebtPriceMantissa and viewCollateralPriceMantissa return

price 0 when no data feed is setup.

However, these functions play an important role in calculating the prices

of assets in different parts of the systems, and returning a 0 value will be

problematic, in case the feed is not previously set.

function getDebtPriceMantissa(address token) external returns (uint2

56) {

if(poolFixedPrices[token] > 0) return poolFixedPrices[token];

address feed = poolFeeds[token];

if(feed != address(0)) {

uint high = getPoolHigh(msg.sender, token);

if(high != poolHighs[msg.sender][token].price) {

poolHighs[msg.sender][token] = PriceLog(high, block.timestamp);

emit RecordPoolHigh(msg.sender, token, high);

}

return high;

}

return 0;

}

Assets:
Oracle.sol

Status: Fixed

Recommendations

Remediation: Consider adding a safety mechanism to protect from the case an oracle is

not setup.

Resolution: The issue was fixed in commit c08af7c: invalid oracle feeds cannot be

passed in Oracle::setCollateralFeed() or

Oracle::setPoolFeed(). Additional safe checks are implemented when

interacting with the protocol to make sure no token is used without a

proper feed address setup.

30

https://portal.hacken.io/App/Projects/Details/9107c802-9d52-4596-9bdd-3fb159d136ef/Finding/c18b9530-2fea-4bcd-9f21-d7b72bc8aeca

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

31

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

32

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/nourharidy/grace-protocol

Commit bb62016

Remediation commit d961752

Whitepaper n/a

Requirements https://docs.grace.loans

Technical Requirements https://github.com/nourharidy/grace-protocol

Contracts in Scope

BorrowController.sol

CollateralDeployer.sol

Core.sol

GTR.sol

Oracle.sol

Pool.sol

PoolDeployer.sol

RateModel.sol

RateProvider.sol

Reserve.sol

Vault.sol

VaultFactory.sol

Collateral.sol

33

https://github.com/nourharidy/grace-protocol
https://docs.grace.loans/
https://github.com/nourharidy/grace-protocol

