
Smart Contract Code Review

And Security Analysis Report

Customer: NOYA

Date: 19/04/2024

We express our gratitude to the NOYA team for the collaborative engagement that enabled the execution of this Smart

Contract Security Assessment.

Noya is a DeFi project consisting on different yield-generating vaults that execute strategies on third party DeFi

protocols.

Platform: EVM

Language: Solidity

Tags: Vault, Crosschain, DEX, EIP712, Oracle

Timeline: 26/02/2024 - 29/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/Noya-ai/noya-vault-contracts

Commit 95fcb52

2

https://hackenio.cc/sc_methodology
https://github.com/Noya-ai/noya-vault-contracts

Audit Summary

10/10 10/10 98% 9/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.8/10
The system users should acknowledge all the risks summed up in the risks section of the report

27 21 0 6
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 2

Medium 15

Low 10

Vulnerability Status

F-2024-1764 - Unfinished Watchers contract allows to bypass the verification process Mitigated

F-2024-1803 - Missing access control in checkIfTVLHasDroped allows malicious users to burn fees Mitigated

F-2024-1806 - Too restrictive condition may lead to loss of performance fees Mitigated

F-2024-1814 - Users can receive less tokens than entitled during withdraw Mitigated

F-2024-1833 - Update holding position can be bypassed during bridge operation Mitigated

F-2024-1834 - Missing slippage allows front-run in token swaps Mitigated

F-2024-1538 - onERC721Received callback is never called which leads to loss of liquidity Fixed

F-2024-1709 - The Keepers contract is not EIP712 compliant Fixed

F-2024-1713 - The usage of the precompile ecrecover can lead to signature mailability Fixed

F-2024-1716 - Missing access control in public functions leads to an unauthorized access Fixed

F-2024-1760 - Direct reset of the minimumHealthFactor allows to bypass the MINIMUM_HEALTH_FACTOR check Fixed

F-2024-1771 - The flashLoan process is not complete, since the assets are not transferred back in the receiveFlashLoan() callback Fixed

F-2024-1789 - Public ERC4626 functions bypass the protocol intended ABI Fixed

F-2024-1795 - Deposit limit check counts deposited amount twice Fixed

F-2024-1802 - Minting of performance fees may cause temporary shares inflation Fixed

F-2024-1808 - Missing access control in burning allow shares supply manipulation Fixed

F-2024-1835 - Unlimited allowance is set by default Fixed

F-2024-1836 - Use of transfer instead of call to send native assets Fixed

F-2024-1837 - Missing call to update holding position results in miscalculated TVL Fixed

F-2024-1839 - The non-updated totalDepositedAmount causes the incorrect calculation of the profit Fixed

F-2024-1843 - Missing checks for the zero address Fixed

F-2024-1846 - USD decimals are incorrectly set Fixed

F-2024-1846 - The non-updated totalProfitCalculat​ed causes leads to the incorrect number of fee shares Fixed

F-2024-1847 - Chainlink’s latestRoundData might return stale or incorrect results Fixed

F-2024-1851 - Missing return value check for tokens transfers may lead to unexpected behavior Fixed

F-2024-1857 - Uncontrolled loop of storage interactions may lead to Denial Of Service Fixed

F-2024-1860 - Missing revert statement causes the funds to be stuck in AccountingManager if the connector is not enabled Fixed

3

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/206b2652-380d-4cd2-8daf-f89f68952a22
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/ea06ed8c-f1bd-4ec2-aadf-61cf90b610d5
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/cc46866f-7c53-4419-9236-d9a6ae5d8b3e
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/bf3d3902-d787-43a0-8fd3-ee785ac3b142
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/a91fe63b-d9bb-4f24-b52a-d40983cd2553
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/adc96b36-4701-472d-80c6-1a5e5948aa12
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/00fb7d5e-e530-4c71-b5e0-c156df87e428
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/f7ff5a3c-d76d-4228-9ec7-f85de67b48bf
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/85b61641-0659-42ae-a6cf-ace5edc22d7d
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/95a2c9b8-d07b-45ff-8295-28ae524c2bec
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/8cbfc96c-df7a-4f01-b68a-09e0d05c895d
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/d109031e-7702-4979-9cd8-0511fe09d7a1
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/aca8765c-164c-4314-99ed-60e0f0d3bd7d
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/4b504103-d5d0-4579-a7b7-52067e73d6b4
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/d8e22e88-eac6-4cad-a812-90757fba211e
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/7ed6b020-7ee0-4ad1-a40e-1cb57f777f89
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/8533da21-5a85-49a2-9b04-03c3727e4dcc
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/7a683adc-63ae-4076-b7bd-d16608b8ad66
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/d3b98527-11be-4041-9482-5fea9c2dc748
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/4c331e8d-e625-4ad0-8079-8f933451eee5
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/dca234ec-6719-4987-a43a-be12ca1a9e45
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/e446fe8a-65cd-4555-b09d-c69bc13ea573
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/788a64a2-99ba-4392-b74d-2f3294f08ba0
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/1c009101-5c5a-428c-973f-df954cb87679
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/9fc895b3-a12a-4ea4-b003-9c90b9f3856a
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/6924e2b3-74db-4824-aa47-578a7ad0131f
https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/256fd2dc-8f68-4384-b8aa-67d7a2921739

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well

as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report

shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for NOYA

Audited By David Camps Novi, Viktor Lavrenenko

Approved By Przemyslaw Swiatowiec

Website https://noya.ai/

Changelog 29/03/2024 - Preliminary Report ; 19/04/2024 - Final Report

4

https://noya.ai/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Risk Statement 9

Findings 10

Vulnerability Details 10

Observation Details 60

Disclaimers 83

Appendix 1. Severity Definitions 84

Appendix 2. Scope 85

System Overview

Noya is a yield-generating DeFi protocol based on vaults that execute different strategies.

The project consists of several parts:

AccountingManager: entry-point for users to deposit and withdraw tokens in exchange for shares, generating yield.

NoyaFeeReceiver: contracts receiving the protocol fees to be managed.

Registry.sol: centralized accountability of all vaults and positions in other protocols.

Keepers.sol: multi-signature wallet for the execution of the vault strategies.

NoyaGovernanceBase: defines the access control of the different roles.

TimeLock.sol: time-lock control contract.

Watchers: verifier contract.

LzHelper*: contracts that interact Layer Zero messaging.

Omnichain*: contracts to manage bridging of assets among different protocol chains.

SwapAndBridgeHandler, LifiImplementation: contract that manage swaping and bridging of assets.

ChainlinkOracleConnector: contract to fetch asset prices from the Chainlink protocol.

UniswapValueOracle: TWAP oracle to get asset prices from the Uniswap protocol.

NoyaValueOracle: defines and decides which oracle should be used to retrieve prices of assets.

TVLHelper: contains the functions to calculate the TVL.

Connectors: individual contracts that interact with a specific DeFi protocol (e.g. Aave, Uniswap, Frax).

Privileged roles

Governor: responsible for changing the addresses of others.

Maintainer: in charge of adding a new vault, adding trusted tokens for that vault, and adding trusted positions to the

registry.

Keepers: manages execution of the strategies. It’s a multisig contract. Strategy managers can submit their

transactions into IPFS in an encrypted way and the keepers will decrypt and execute it.

Watchers: responsible to make sure the execution of noya is going on correctly. If there is any misbehaving (like

price manipulation or any suspicious actions from the keepers) the watchers can undo the action.

Emergency: cold wallet that is going to be used in situations that a position is stuck or another role of noya is

compromised.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed scoring criteria

can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 9 out of 10.

Functional requirements are sufficient.

Technical description is limited.

NatSpec is not sufficient.

Run instructions are provided.

Technical description is included.

Code quality

The total Code Quality score is 10 out of 10.

The gas modeling is correct.

Best practices are followed.

The development environment is configured.

Test coverage

Code coverage of the project is 98% (branch coverage).

Deployment and basic user interactions are covered with tests.

All contracts are tested.

Negative test coverage is provided.

Security score

Upon auditing, the code was found to contain 0 critical, 2 high, 15 medium, and 10 low severity issues, leading to a

security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.8. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The project utilizes Solidity version 0.8.20 or higher, which includes the introduction of the PUSH0 (0x5f) opcode.

This opcode is currently supported on the Ethereum mainnet but may not be universally supported across other

blockchain networks. Consequently, deploying the contract on chains other than the Ethereum mainnet, such as

certain Layer 2 (L2) chains or alternative networks, might lead to compatibility issues or execution errors due to the

lack of support for the PUSH0 opcode. In scenarios where deployment on various chains is anticipated, selecting an

appropriate Ethereum Virtual Machine (EVM) version that is widely supported across these networks is crucial to

avoid potential operational disruptions or deployment failures.

The usage of a custom minimumHealthFactor in the following connectors: AaveConnector.sol,

CompoundConnector.sol, PrismaConnector.sol, SiloConnector.sol, FraxConnector.sol,

MorphoBlueConnector.sol creates a risk that the custom minimumHealthFactor will be improperly set by the

onlyMaintainer, which will lead to issues.

The value of the fees implemented by the system can change after a user makes a deposit. Thus it is possible a

user will interact with the protocol expecting a specific fee (e.g. 5% withdrawal fee) but pay a higher fee later on

(e.g. withdrawal fee increased to 10%).

When performing a deposit into the protocol, some ERC20 tokens shares are minted to the specified receiver

address. It should be noted that this address should be able to manage those tokens (e.g. EOA). Else, EOA should

not be allowed by the system.

The fees are implemented over the same amounts in a redundant matter: management fees, performance fees and

withdrawal fees are applied over the same amounts. Although they have different principles applied, it should be

noted that they are redundant.

Any actor can send tokens to the AccountingManager contract in order to increase the TVL, affecting the amount

of fees recorded, as well as the amount of shares minted by the user during deposits and the amount of received

tokens during withdraw. This is due to the fact that TVL depends on balanceOf the contract.

Both AccountingManager and LifiImplementation include functions that allow the retrieval of all native or

ERC20 tokens from the contract. It should be noted, however, that those functions have restrictive access control

mechanisms.

The project is highly centralized, since it fully controls the timings of the deposits and withdrawals of the clients.

This can result in Denial of Service if the protocol owner is not able to access its account to execute the required

methods.

Many of the processes and data used in the protocol are off-chain and thus cannot be audited. One example is the

usage of the multi-signature process in the Keepers contract. Another example is the usage of data and

additionalData in the holding positions structs. One additional example is the usage of cross-chain

communication via Layer Zero and Omnichain.

There is no on-chain method that checks that BridgeRequests are not replayed. Therefore there is a risk that the

same bridging action is used repeatedly.

The protocol uses TWAP oracles to retrieve the price of assets. It should be noted that TWAP oracles require a

uniform liquidity distribution across the fetched pool in order to provide consistent and precise values. The

development team should be very careful that this is the case when retrieving data from such oracles, and monitor

the used pools to make sure the quality of the pool data provided is good enough.

It should be noted that TWAP oracles provide “smoothened” data, since it uses a time window of price data to

prevent flash loan attacks or other kinds of price manipulations that are typical for AMM pools. Therefore, the

selected parameters in the TWAP oracle should be chosen wisely to get the best data possible: a very wide window

will be more robust to price manipulation but will not reflect the real-time valuation of assets. Due to this, it is

recommended to use TWAP data only in case Chainlink data feeds are not available and, moreover, to only use

TWAP for healthy pools and tokens.

Noya interacts with several third-party contracts (such as Aave, Stargate or PancakeSwap) that are not part of this

audit scope. Although the consistency within those contracts and with the calls to such external protocols has been

reviewed and reported if necessary, it is assumed by the audit team that those third-party protocols are done

correctly by the development team (see risk statement below).

The performance fee will only work when the vault underlying tokens valuation increases. The reason is that, when

calling collectPerformanceFees, the previous value of storedProfitForFee is assigned to

totalProfitCalculated and, therefore, only increasing storedProfitForFee will pass the check.

Risk Statement

This audit report focuses exclusively on the security assessment of the contracts within the specified review scope.

Interactions with out-of-scope contracts are presumed to be correct and are not examined in this audit. We want to

highlight that Interactions with contracts outside the specified scope, such as:

/contracts/connectors/AaveConnector.sol → pool

/contracts/connectors/StargateConnector.sol → stargateRouter

8

/contracts/connectors/PancakeswapConnector.sol → masterchef

have not been verified or assessed as part of this report. This situation is present in all connector contracts that

interact with external protocols.

While we have diligently identified and mitigated potential security risks within the defined scope, it is important to note

that our assessment is confined to the isolated contracts within this scope. The overall security of the entire system,

including external contracts and integrations beyond our audit scope, cannot be guaranteed.

Users and stakeholders are urged to exercise caution when assessing the security of the broader ecosystem and

interactions with external contracts. For a comprehensive evaluation of the entire system, additional audits and

assessments outside the scope of this report are necessary.

This report serves as a snapshot of the security status of the audited contracts within the specified scope at the time of

the audit. We strongly recommend ongoing security evaluations and continuous monitoring to maintain and enhance the

overall system's security.

9

Findings

Vulnerability Details

F-2024-1538 - onERC721Received callback is never called which leads to loss of

liquidity - High

Description: The function PancakeswapConnector::sendPositionToMasterChef() enables the

manager to transfer the NFT LP tokens from PancakeswapConnector to the

MasterChefV3. This function can be seen below.

function sendPositionToMasterChef(uint256 tokenId) external onlyManager { IERC721

(address(positionManager)).transferFrom(address(this), address(masterchef), token

Id);

}

The transfer of a NFT Liquidity position is supposed to trigger the callback function

MasterChefV3::onERC721Received() to record all of the user’s liquidity data to the

state. This function can be found in the code snippet below.

/// @notice Upon receiving a ERC721

function onERC721Received(

address,

address _from,

uint256 _tokenId,

bytes calldata

) external nonReentrant returns (bytes4) {

if (msg.sender != address(nonfungiblePositionManager)) revert NotPancakeNFT();

DepositCache memory cache;

(

,

,

cache.token0,

cache.token1,

cache.fee,

cache.tickLower,

cache.tickUpper,

cache.liquidity,

,

,

,

) = nonfungiblePositionManager.positions(_tokenId);

if (cache.liquidity == 0) revert NoLiquidity();

uint256 pid = v3PoolPid[cache.token0][cache.token1][cache.fee];

if (pid == 0) revert InvalidNFT();

PoolInfo memory pool = poolInfo[pid];

ILMPool LMPool = ILMPool(pool.v3Pool.lmPool());

if (address(LMPool) == address(0)) revert NoLMPool();

UserPositionInfo storage positionInfo = userPositionInfos[_tokenId];

positionInfo.tickLower = cache.tickLower;

positionInfo.tickUpper = cache.tickUpper;

positionInfo.user = _from;

positionInfo.pid = pid;

// Need to update LMPool.

LMPool.accumulateReward(uint32(block.timestamp));

updateLiquidityOperation(positionInfo, _tokenId, 0);

// Update Enumerable

addToken(_from, _tokenId);

emit Deposit(_from, pid, _tokenId, cache.liquidity, cache.tickLower, cache.tickUp

per);

return this.onERC721Received.selector;

}

However, it doesn’t happen due to the usage of transferFrom() which doesn't call

the onERC721Received() callback at the end of the transaction. As a result, all of the

deposited liquidity is not recorded and cannot be withdrawn later on. The Proof Of

Concept test was created to demonstrate the previously mentioned issue.

Assets:
contracts/connectors/PancakeswapConnector.sol

Status: Fixed

Classification

10

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/00fb7d5e-e530-4c71-b5e0-c156df87e428

Severity: High

Impact: Likelihood [1-5]: 5

Impact [1-5]: 5

Exploitability [1,2]: 1

Complexity [0-2]: 1

Final Score: 3.51 [High]

Recommendations

Remediation: Consider replacing the transferFrom() with safeTransferFrom(), inside of the

sendPositionToMasterChef() function which will trigger the

MasterChefV3::onERC721Received().

Remediation (revised commit: 3a95ba3): The transferFrom() method was replaced

with safeTransferFrom() inside of the

PancakeswapConnector::sendPositionToMasterChef().

Evidences

Proof Of Concept

Reproduce:
1. Alice, who is the holder of the NFT Liquidity position on the PancakeSwapV3,

transfers her position to the PancakeSwapV3Connector.

2. Then Manager calls

PancakeSwapV3Connector::sendPositionToMasterChef() to transfer the

deposited Alice's LP position to the MasterChefV3.

3. The position is lost, since the MasterChefV3::onERC721Received() is not called

and liquidity is not recorded.

4. The position NFT LP cannot be withdrawn after that since it hasn't been recorded

previously

Results:
function testTransferNFTLPToMasterChef() external {

// Get the address which has a nft lp for the usdc/dai position on PancakeSwapV3

on Binance Smart Chain

address Alice = 0x310C945683a231480fF8E9b6ecDeEcA0Fc8060C3;

vm.startPrank(Alice);

IERC721(NonfungiblePositionManager).transferFrom(Alice, address(connector), 80846

); // Alice is transferring her ERC721 position with tokenId=80846 to the connect

or

vm.stopPrank();

// Manager uses PancakeSwapV3Connector::sendPositionToMasterChef() to transfer th

e previously transferred nft position to the MasterChefV3

vm.startPrank(owner);

connector.sendPositionToMasterChef(80846);

(uint128 liquidity, uint128 boostLiquidity, int24 tickLower, int24 tickUpper, uin

t256 rewardGrowthInside, uint256 reward, address user, uint256 pid, uint256 boost

Multiplier) = masterChef.userPositionInfos(80846);

console.log("Position user: %s", user);

console.log("Liquidity of the position %s", liquidity);

vm.expectRevert(abi.encodeWithSelector(NotOwner.selector));

connector.withdraw(80846);

vm.stopPrank();

}

As a result, we can see that the deposited liquidity to the MasterChef is zero as well as

the owner of the LP position.

Position user: 0x00

Liquidity of the position 0

11

F-2024-1839 - The non-updated totalDepositedAmount causes the incorrect

calculation of the profit - High

Description: The variable totalDepositedAmount, which is used in the calculation of the profit, is

not updated anywhere, which leads to the situation that the profit would be greater than

expected. It can impact the number of fees the managementFeeReceiver and the

performanceFeeReceiver receives.

function getProfit() public view returns (uint256) {

uint256 tvl = TVL();

if (tvl + totalWithdrawnAmount > totalDepositedAmount) {

return tvl + totalWithdrawnAmount - totalDepositedAmount;

}

return 0;

}

Furthermore, it affects the functionality of the checkIfTVLHasDropped() function,

which will lead to the situation when the result of the getProfit() function in the if

condition is greater than expected. The previously mentioned condition can be found in

the code snippet below.

function checkIfTVLHasDroped() public {

if (getProfit() < storedProfitForFee) {

_burn(address(this), preformanceFeeSharesWaitingForDistribution);

preformanceFeeSharesWaitingForDistribution = 0;

profitStoredTime = 0;

}

}

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Classification

Severity: High

Impact: Likelihood [1-5]: 5

Impact [1-5]: 4

Exploitability [0-2]: 0

Complexity [0-2]: 1

Final Score: 4.3 (High)

Recommendations

Remediation: Consider updating the totalDepositedAmount variable inside of the

executeDeposit() function.

Remediation (revised commit: 95fcb52): The Noya team provided a fix during the

audit and totalDepositedAmount now is updated in the executeDeposit()

function.

12

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/4c331e8d-e625-4ad0-8079-8f933451eee5

F-2024-1716 - Missing access control in public functions leads to an

unauthorized access - Medium

Description: FraxConnector::borrowAndSupply(), MaverickConnector::unstake() and

MaverickConnector::removeLiquidityFromMaverickPool() functions should

only be called by the privileged addresses, which are keeperContract or

emergencyManager, which can be accessed via the

NoyaGovernanceBase::onlyManager(). However, the functions do not restrict the

caller, allowing anyone to do a set of actions:

Using a not-protected FraxConnector::borrowAndSupply(), anyone can

borrow and supply assets to the Frax Finance.

Using a not-protected MaverickConnector::unstake() and

MaverickConnector::removeLiquidityFromMaverickPool() anyone can

unstake Liquidity tokens from staking and remove liquidity from the maverick pool

respectively.

The previously mentioned actions are not intended by the system for ordinary users,

hence they should not be available for them.

Assets:
contracts/connectors/FraxConnector.sol

contracts/connectors/MaverickConnector.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 5

Impact [1-5]: 2

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 3.5 (Medium)

Recommendations

Remediation: It is recommended to add the necessary access control modifier onlyManager to the

affected functions.

Remediation: (revised commit: a3790de): The onlyManager modifier has been added

to the FraxConnector::borrowAndSupply(), MaverickConnector::unstake()

and MaverickConnector::removeLiquidityFromMaverickPool() functions.

13

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/95a2c9b8-d07b-45ff-8295-28ae524c2bec

F-2024-1764 - Unfinished Watchers contract allows to bypass the verification

process - Medium

Description: According to the documentation, the Watchers contract is responsible for the

verification of the liquidity movements from connectors to the AccountingManager

contracts. However, due to the fact that the Watchers::verifyRemoveLiquidity()

is empty, this requirement is not met, which means that the movements of liquidity can

be done without verification.

Assets:
contracts/governance/Watchers.sol

contracts/helpers/BaseConnector.sol

Status: Mitigated

Classification

Severity: Medium

Impact: Likelihood [1-5]: 5

Impact [1-5]: 2

Exploitability [0-2]: 1

Complexity [0-2]: 0

Final Score: 2.7 (Medium)

Recommendations

Remediation: It is recommended to fix the mismatch between the documentation and implementation

by implementing the Watchers::verifyRemoveLiquidity() function.

Remediation (revised commit: bee7c27): the Noya team reported that the function

verifyRemoveLiquidity is present for future project upgrades. Additionally, the

Watcher contract was updated in this remediation commit, inheriting the Keepers

contract in order to provide actual functionality.

14

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/206b2652-380d-4cd2-8daf-f89f68952a22

F-2024-1771 - The flashLoan process is not complete, since the assets are not

transferred back in the receiveFlashLoan() callback - Medium

Description: The flashloan process usually consists of two parts:

the transfer of borrowed assets to the borrower

the transfer of borrowed assets along with the necessary fees back to the protocol,

which offers flashloan functionality.

In the current implementation of the FlashLoan Recipient, specifically within

BalancerConnector, the receiveFlashLoan() function fails to fulfill its crucial

responsibility of transferring the borrowed assets back. This flaw severely disrupts the

entire flashloan process, rendering it non-functional. The vulnerable code can be seen

in the code snippet below:

function receiveFlashLoan(

IERC20[] memory tokens,

uint256[] memory amounts,

uint256[] memory feeAmounts,

bytes memory userData

) external override {

require(msg.sender == address(vault));

address destinationConnector = abi.decode(userData, (address));

if (registry.isAnActiveConnector(vaultId, destinationConnector)) {

for (uint256 i = 0; i < tokens.length; i++) {

tokens[i].transfer(destinationConnector, amounts[i]);

amounts[i] = amounts[i] + feeAmounts[i]; }}

flashLoanTokens = tokens;

flashLoanAmounts = amounts;

}

Assets:
contracts/connectors/BalancerFlashLoan.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 5

Impact [1-5]: 4

Exploitability [0-2]: 1

Complexity [0-2]: 1

Final Score: 3.2 (Medium)

Recommendations

Remediation: It is recommended to implement the transfer of borrowed assets and fees if necessary

in the receiveFlashLoan() function.

Remediation: (revised commit: 2834f83): The missing transfer was added to the

BalancerFlashLoan::receiveFlashLoan() to transfer the tokens back to the vault.

Evidences

PC

Reproduce:
1. Alice, who is the owner and the manager of the contract, tries to borrow 5e18 DAI

tokens.

2. The transaction reverts, since BalancerFlashLoan doesn't return the borrowed

assets in the receiveFlashLoan() callback.

15

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/d109031e-7702-4979-9cd8-0511fe09d7a1

contract TestFlashLoan is testStarter, MainnetAddresses {

UNIv3Connector uniconnector;

function setUp() public {

console.log("----------- Initialization -----------");

// --------------------------------- set env ---------------------------------

uint256 fork = vm.createFork(RPC_URL, startingBlock);

vm.selectFork(fork);

console.log("Test timestamp: %s", block.timestamp);

// --------------------------------- deploy the contracts -----------------------

address Alice = owner;

vm.startPrank(Alice);

deployEverythingNormal(USDC);

// --------------------------------- init connector -----------------------------

uniconnector = new UNIv3Connector(

uniswapV3PositionManager, uniV3Factory, BaseConnectorCP(registry, 0, swapHandler,

noyaOracle)

);

console.log("UNIv3Connector deployed: %s", address(uniconnector));

// ------------------- add connector to vaultManager -------------------

addConnectorToRegistry(vaultId, address(uniconnector));

// ------------------- add AaveConnector as eligable user for swap --------------

addTrustedTokens(vaultId, address(accountingManager), USDC);

addTrustedTokens(vaultId, address(accountingManager), DAI);

addTokenToChainlinkOracle(address(USDC), address(840), address(USDC_USD_FEED));

addTokenToNoyaOracle(address(USDC), address(chainlinkOracle));

addTokenToChainlinkOracle(address(DAI), address(840), address(DAI_USD_FEED));

addTokenToNoyaOracle(address(DAI), address(chainlinkOracle));

addRoutesToNoyaOracle(address(DAI), address(USDC), address(840));

console.log("Tokens added to registry");

registry.addTrustedPosition(

vaultId, uniconnector.UNI_LP_POSITION_TYPE(), address(uniconnector), true, false,

abi.e

See more

Results:

16

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/d109031e-7702-4979-9cd8-0511fe09d7a1

F-2024-1789 - Public ERC4626 functions bypass the protocol intended ABI -

Medium

Description: The contract AccountingManager inherits the ERC4626 standard, including all its

public methods.

However, the protocol has defined some alternative methods that should be used by

the users instead of the regular ERC4626 ones. Since all public methods from the

ERC4626 standard are available for users to call, they can call them instead of the ones

from AccountingManager. This way users can bypass the intended protocol entry

points, resulting unexpected behaviour, loss of consistency and lack of fees.

One example of these alternative methods is deposit. AccountingManager defines

deposit as follows:

function deposit(address receiver, uint256 amount, address referrer) public nonRe

entrant whenNotPaused {

if (amount == 0) {

revert NoyaAccounting_INVALID_AMOUNT();

}

baseToken.safeTransferFrom(msg.sender, address(this), amount);

if (amount > depositLimitPerTransaction) {

revert NoyaAccounting_DepositLimitPerTransactionExceeded();

}

if (TVL() + amount > depositLimitTotalAmount) {

revert NoyaAccounting_TotalDepositLimitExceeded();

}

depositQueue.queue[depositQueue.last] = DepositRequest(receiver, block.timestamp,

0, amount, 0);

emit RecordDeposit(depositQueue.last, receiver, amount, block.timestamp, referrer

);

depositQueue.last += 1;

depositQueue.totalAWFDeposit += amount;

}

The ERC4626 contract's deposit function is:

function deposit(uint256 assets, address receiver) public virtual returns (uint25

6) {

uint256 maxAssets = maxDeposit(receiver);

if (assets > maxAssets) {

revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);

}

uint256 shares = previewDeposit(assets);

_deposit(_msgSender(), receiver, assets, shares);

return shares;

}

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 5

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 3.33 [Medium]

Recommendations

17

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/aca8765c-164c-4314-99ed-60e0f0d3bd7d

Remediation: It is recommended to block ERC4626 public methods that should not be reachable by

users.

Remediation (revised commit: f369e85): the following ERC4626 public methods were

blocked by overriding and reverting its calls:

mint(uint256 shares, address receiver).

withdraw(uint256 assets, address receiver, address owner)

redeem(uint256 shares, address receiver, address shareOwner)

deposit(uint256 assets, address receiver)

18

F-2024-1802 - Minting of performance fees may cause temporary shares

inflation - Medium

Description: The performance fee process consists on several steps.

First, the fee amount, in shares, is recorded as

preformanceFeeSharesWaitingForDistribution and minted in

recordProfitForFee.

Later on, the function checkIfTVLHasDroped is called as an additional check to make

sure there is no manipulation of the fee. If the check is not passed, the fees will be

burned and the recorded value will be deleted:

function checkIfTVLHasDroped() public {

if (getProfit() < storedProfitForFee) {

_burn(address(this), preformanceFeeSharesWaitingForDistribution);

preformanceFeeSharesWaitingForDistribution = 0;

profitStoredTime = 0;

}

}

Finally, the fees will be collected via collectPerformanceFees, where the fees will be

transferred to the corresponding receiver.

Due to the check in checkIfTVLHasDroped, there may be cases in which the fees will

be burned. In those cases, there will be a temporary inflation in the amount of shares

that will cause some side effects in deposits and withdrawals: since both deposit and

withdraw processes depend on the totalSupply of shares, the amount of shares

and assets a user will receive during this temporary inflation will be affected.

For example, a user will receive fewer assets in the withdrawal process, since the

number of assets will be calculated as:

assets = shares_to_burn * vault_balance / total_shares

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 1

Final Score: 2.60 [Medium]

Recommendations

Remediation: Consider minting the fees once all the checks are passed during the performance

fee process.

Remediation (revised commit: 0d2cf98): the fees are now minted only at the latest

step of the process in collectPerformanceFees, avoiding temporary shares inflation.

19

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/d8e22e88-eac6-4cad-a812-90757fba211e

F-2024-1803 - Missing access control in checkIfTVLHasDroped allows malicious

users to burn fees - Medium

Description: The method checkIfTVLHasDroped will burn the performance fees if the profit of the

vault has dropped since it was recorded:

function checkIfTVLHasDroped() public {

if (getProfit() < storedProfitForFee) {

_burn(address(this), preformanceFeeSharesWaitingForDistribution);

preformanceFeeSharesWaitingForDistribution = 0;

profitStoredTime = 0;

}

}

Since the function is public and has no access control, any user can call it. Therefore,

if a slightly change in the underlying token valuation would happen, getProfit will be

lower than storedProfitForFee and a malicious user can burn all fees.

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Mitigated

Classification

Severity: Medium

Impact: Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 1

Final Score: 2.60 [Medium]

Recommendations

Remediation: Consider restricting the access to the function checkIfTVLHasDroped and/or adding

some margin to the variation of getProfit that will burn the shares.

Remediation: the finding was mitigated given the following explanation from the Noya

team:

It is intentional because if a malicious strategy manager tries to get more fees

that it's supposed to get, everyone can burn the fees if the tvl drops in that

period.

20

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/ea06ed8c-f1bd-4ec2-aadf-61cf90b610d5

F-2024-1806 - Too restrictive condition may lead to loss of performance fees -

Medium

Description: The protocol performance fees are calculated from the vault underlying assets valuation

via getProfit:

function recordProfitForFee() public onlyManager {

...

storedProfitForFee = getProfit();

...

}

Later on, a check is introduced to make sure the same valuation via getProfit has not

decreased at all:

function checkIfTVLHasDroped() public {

if (getProfit() < storedProfitForFee) {

_burn(address(this), preformanceFeeSharesWaitingForDistribution);

preformanceFeeSharesWaitingForDistribution = 0;

profitStoredTime = 0;

}

}

Given the volatility nature of the crypto assets, rounding approximations, decimals, and

other unpredictable external factors, it is very likely that this check will trigger and the

fees will be lost. This is caused due to the extremely restrictive condition imposed,

which does not have any margin.

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Mitigated

Classification

Severity: Medium

Impact: Likelihood [1-5]: 4

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 3.03 [Medium]

Recommendations

Remediation: It is recommended to add some margin to the variation of getProfit so that the check

is less restrictive and can support the intrinsic variations that are normal and

unpredictable.

Remediation: this issue was set as Mitigated, provided the given explanation from

Noya:

Even if the tvl goes lower and the fees got burned, if the tvl increases again,

the strategy manager will get the performance fee for both periods the next

time (the fees that was burned before, will be minted again)

21

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/cc46866f-7c53-4419-9236-d9a6ae5d8b3e

F-2024-1814 - Users can receive less tokens than entitled during withdraw -

Medium

Description: The function fulfillCurrentWithdrawGroup will set the value of

currentWithdrawGroup.totalABAmount, which is later used to calculate the amount

of tokens a user will receive during the withdraw in executeWithdraw.

Said variable, is set up depending on the token balance of AccountingManager. If the

amount of tokens is enough to cover for the total tokens requested for withdraw

currentWithdrawGroup.totalCBAmount, the process will continue as normal.

However, if the balance is not enough, the users will not receive the total amount they

are entitled but an amount proportional to the available assets:

if (availableAssets >= currentWithdrawGroup.totalCBAmount) {

currentWithdrawGroup.totalABAmount = currentWithdrawGroup.totalCBAmount;

} else {

currentWithdrawGroup.totalABAmount = availableAssets;

}

Later, in executeWithdraw, the amount the users will receive will be modified as the

amount they are entitled data.amount multiplied by the ratio being provided by the

protocol:

uint256 baseTokenAmount =

data.amount * currentWithdrawGroup.totalABAmount / currentWithdrawGroup.totalCBAm

ountFullfilled;

Furthermore, if the user withdraws all of their shares, but the accountingManager

doesn't have the necessary number of assets, all of the user's shares are burned. The

vulnerable code can be seen in the code snippet below:

uint256 baseTokenAmount =

data.amount * currentWithdrawGroup.totalABAmount / currentWithdrawGroup.totalCBAm

ountFullfilled;

withdrawRequestsByAddress[data.owner] -= shares;

_burn(data.owner, shares);

The _burn() function burns all shares, although the amount to be withdrawn can be

different

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Mitigated

Classification

Severity: Medium

Impact: Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 1

Final Score: 2.60 [Medium]

Recommendations

Remediation: Users should get the tokens they are entitled to. It is recommended to either revert the

call when the scenario is not possible, or to record the remaining balance of each user

so that they can withdraw the tokens at a later time.

Remediation (revised commit: bee7c27): mitigated after the following feedback from

the Noya team:

22

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/bf3d3902-d787-43a0-8fd3-ee785ac3b142

It is intended because the process of withdrawal, sometimes has some hidden

fees and if the users that are withdrawing don't pay those fees, other users in

the vault will pay and we don't want that.

So the users that are withdrawing will pay the withdrawal fee of the protocols

(if there is any withdrawal fee and the bridge slippage from other chains)

23

F-2024-1834 - Missing slippage allows front-run in token swaps - Medium

Description: The function executeSwap is responsible for calling the corresponding swap

implementation and execute a token swap.

The swapRequest inputted into this method is the following, containing two critical

parameters checkForSlippage and minAmount:

struct SwapRequest {

address from;

uint256 routeId;

uint256 amount;

address inputToken;

address outputToken;

bytes data;

bool checkForSlippage;

uint256 minAmount;

}

However, both parameters can have different values, which will be check in

executeSwap:

function executeSwap(SwapRequest memory _swapRequest)

external

payable

onlyEligibleUser

onlyExistingRoute(_swapRequest.routeId)

returns (uint256 _amountOut)

{

if (_swapRequest.amount == 0) revert InvalidAmount();

RouteData memory swapImplInfo = routes[_swapRequest.routeId];

if (swapImplInfo.isBridge) revert RouteNotAllowedForThisAction();

if (_swapRequest.checkForSlippage && _swapRequest.minAmount == 0) {

uint256 _slippageTolerance = slippageTolerance[_swapRequest.inputToken][_swapRequ

est.outputToken];

if (_slippageTolerance == 0) {

_slippageTolerance = genericSlippageTolerance;

}

INoyaValueOracle _priceOracle = INoyaValueOracle(valueOracle);

uint256 _outputTokenValue =

_priceOracle.getValue(_swapRequest.inputToken, _swapRequest.outputToken, _swapReq

uest.amount);

_swapRequest.minAmount = (((1e6 - _slippageTolerance) * _outputTokenValue) / 1e6)

;

}

_amountOut = ISwapAndBridgeImplementation(swapImplInfo.route).performSwapAction(m

sg.sender, _swapRequest);

emit ExecutionCompleted(

_swapRequest.routeId, _swapRequest.amount, _amountOut, _swapRequest.inputToken, _

swapRequest.outputToken

);

}

In case that checkForSlippage = false and minAmount = 0, the call to

performSwapAction will go through, without any slippage defined. As a consequence,

when the swap transaction reaches the corresponding implementation, it will be

executed without this critical parameter, which will allow the swap to be front-run by

external actors and result in a loss of funds.

Assets:
contracts/helpers/SwapHandler/GenericSwapAndBridgeHandler.sol

Status: Mitigated

Classification

Severity: Medium

Impact: Likelihood [1-5]: 4

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 1

Final Score: 2.91 [Medium]

24

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/adc96b36-4701-472d-80c6-1a5e5948aa12

Recommendations

Remediation: It is recommended to always set a minimum amount or slippage during swaps.

Remediation (revised commit: 79c0b24): this finding was set as Mitigated after the

following explanation from the Noya team, plus the following notes on the different

entry points that are sensitive to front-running.

When we are using this function, (the “swapHoldings” function in

BaseConnector) we are actually hardcoding “true” for the checkSlippage

argument, So It's going to check for slippage in all of swaps

Additionally, the function GenericSwapAndBridgeHandler::executeSwap is

external and thus can be called directly, overcoming the hardcoded value mentioned

by the team for the mitigation. However, the function calls are protected by the modifier

onlyEligibleUser which will prevent random actors from executing the function. By

implementing this modifier, the Noya team is responsible for the correct usage of such

function in order to avoid this front-running issue.

One more entry point was found in the function

LifiImplementation::performSwapAction, which was addressed by adding the

onlyHandler modifier, making sure external actors cannot use the call. It should be

noted that the handler is now responsible to make calls with the corresponding

parameters in order to avoid front-running, since it is still possible.

25

F-2024-1835 - Unlimited allowance is set by default - Medium

Description: In _setAllowance, when the desired amount to operate is lower than the current

allowance, an unlimited allowance is set:

function _setAllowance(IERC20 token, address spender, uint256 amount) internal {/

/audit-ok

...

if (allowance < amount) {

if (allowance != 0) {

token.approve(spender, 0);

}

token.approve(spender, type(uint256).max);

}

}

It is not recommended to set an allowance to an unlimited value, since it can result in

unexpected behaviour, and allow the protocol to perform unwanted actions that are out

of control.

Assets:
contracts/helpers/SwapHandler/Implementaions/LifiImplementation.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 2.72 [Medium]

Recommendations

Remediation: Set the allowance to the required amount instead to an unlimited value.

Remediation (revised commit: bee7c27): this issue was fixed by setting the correct

allowance at every time via ERC20::forceApprove.

26

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/8533da21-5a85-49a2-9b04-03c3727e4dcc

F-2024-1837 - Missing call to update holding position results in miscalculated

TVL - Medium

Description: The function addLiquidity is called when token deposits are processed by the

system. It will perform a sub-call to _addLiquidity. This latest function will return the

bool addPositions in order to determine if the holding position should be updated for

that token:

function addLiquidity(address[] memory tokens, uint256[] memory amounts, bytes me

mory data) external override {

...

bool addPositions = _addLiquidity(tokens, amounts, data); // call the specific im

plementation if the connector needs to do something after the liquidity is added

if (addPositions) {

for (uint256 i = 0; i < tokens.length; i++) {

_updateTokenInRegistry(tokens[i]); // update the token in the registry

}

}

}

The function _addLiquidity is an empty method that each connector should

override. However, said function is not implemented in most connectors and, as a

result, the holding positions will not be updated. In turn, the protocol TVL calculated via

getTVL will not account these amounts transferred to the connectors, resulting in

miscalculations. These miscalculations will affect the amount of shares and tokens

obtained by the users in deposits and withdraws, as well as the calculation of fees.

Assets:
contracts/helpers/BaseConnector.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 5

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 3.33 [Medium]

Recommendations

Remediation: It is recommended to execute _updateTokenInRegistry regardless of the call to

_addLiquidity.

Remediation (revised commit: bee7c27): the call to _updateTokenInRegistry is

now executed regardless of the return value of _addLiquidity.

27

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/d3b98527-11be-4041-9482-5fea9c2dc748

F-2024-1846 - USD decimals are incorrectly set - Medium

Description: According to the Noya team, the USD token that is used as a basis is USDC. Said token

has 6 decimals in the principal chains where it is used. However, it is wrongly

assumed it has 8 decimals:

function getTokenDecimals(address token) public view returns (uint256) {

if (token == ETH) return 10 ** 18;

if (token == USD) return 10 ** 8;

uint256 decimals = IERC20Metadata(token).decimals();

return 10 ** decimals;

}

As a consequence, inconsistencies in calculations may arise, resulting in unexpected

behavior and miscalculations.

Additionally, it is assumed that the address(0) is describing ether and

address(840) is describing USD. These assumptions are dangerous since new

chains and tokens may be used in the future in the protocol, that may not be compatible

with the aforementioned assumptions.

In GearBoxV3 contract, it is assumed that address(840) is describing USD.

Assets:
contracts/helpers/valueOracle/oracles/ChainlinkOracleConnector.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 4

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 1

Final Score: 2.91 [Medium]

Recommendations

Remediation: It is recommended to work with the specific ERC20 tokens that will be actually used in

the protocol. According to the Noya team this means USDC, WEHT and WBTC. As such,

the safest approach to implement is to call the corresponding ERC20 contract's

decimals function in order to retrieve the right decimal number in all cases instead of

hardcoding values.

Remediation: (revised commit: 27891c5): The number of decimals is not hardcoded

and is calculated dynamically now.

28

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/e446fe8a-65cd-4555-b09d-c69bc13ea573

F-2024-1846 - The non-updated totalProfitCalculat​ed causes leads to the

incorrect number of fee shares - Medium

Description: The variable totalProfitCalculated, which is used in the calculation of the fee

shares, is not updated anywhere, which leads to the situation that the number of shares

the performanceFeeReceiver will get, will be bigger than expected. The code snippet

can be found below.

function recordTVLForFee() public onlyManager {

if (preformanceFeeSharesWaitingForDistribution > 0) {

_burn(address(this), preformanceFeeSharesWaitingForDistribution);

preformanceFeeSharesWaitingForDistribution = 0;

}

storedProfitForFee = getProfit();

profitStoredTime = block.timestamp;

if (storedProfitForFee < totalProfitCalculated) {

return;

}

_mint(performanceFeeReceiver, previewDeposit(((storedProfitForFee - totalProfitCa

lculated) * performanceFee) / FEE_PRECISION));

}

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 5

Impact [1-5]: 4

Exploitability [0-2]: 1

Complexity [0-2]: 1

Final Score: 3.2 (Medium)

Recommendations

Remediation: Consider updating the value of totalProfitCalculated in the code.

Remediation: (revised commit: 95fcb52): The Noya team provided a fix during the

audit and totalProfitCalculated now is updated in the

collectPerformanceFees() function.

29

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/788a64a2-99ba-4392-b74d-2f3294f08ba0

F-2024-1847 - Chainlink’s latestRoundData might return stale or incorrect results

- Medium

Description: The function getValueFromChainlinkFeed calls chainlink's latestRoundData.

If there is a problem with Chainlink starting a new round and finding consensus on the

new value for the oracle (e.g. Chainlink nodes abandon the oracle, chain congestion,

vulnerability/attacks on the Chainlink system) consumers of this contract may continue

using outdated stale or incorrect data (if oracles are unable to submit no new round is

started):

(

/*uint80 roundID*/,

int price,

/*uint startedAt*/,

uint256 updatedAt,

/*uint80 answeredInRound*/

) = priceFeed.latestRoundData();

Assets:
contracts/helpers/valueOracle/oracles/ChainlinkOracleConnector.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 2

Impact [1-5]: 5

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 3.5 [Medium]

Recommendations

Remediation: It is recommended to add an additional sanity check to the return values from Chainlink:

(roundId, price, , updatedAt, answeredInRound) = latestRoundData();

require(price > 0, "Chainlink price <= 0");

Remediation (revised commit: bee7c27): the issue was fixed by implementing the

following check on the received price in getValueFromChainlinkFeed

if (price <= 0) {

revert NoyaChainlinkOracle_PRICE_ORACLE_UNAVAILABLE(address(source), address(0),

address(0));

}

30

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/1c009101-5c5a-428c-973f-df954cb87679

F-2024-1857 - Uncontrolled loop of storage interactions may lead to Denial Of

Service - Medium

Description: The functions removeTrustedPosition can reach the block Gas limit and become

unusable, since it depends on the number of holdingPosition structs events

recorded in each vault, which is unlimited.

function removeTrustedPosition(uint256 vaultId, bytes32 _positionId)

external

onlyVaultMaintainer(vaultId)

vaultExists(vaultId)

{

Vault storage vault = vaults[vaultId];

if (!vault.trustedPositionsBP[_positionId].isEnabled) revert NotExist();

for (uint256 i = 0; i < vault.holdingPositions.length; i++) {

if (vault.holdingPositions[i].positionId == _positionId) {

revert CannotRemovePosition(vaultId, _positionId);

}

}

}

Similarly, the functions getTVL and getLatestUpdateTime in TVLHelper also fit in

this scenario.

The aforementioned array can reach an unlimited size and, as eventually, the function

execution can reach the block Gas limit. Due to the block gas limit, transactions can only

consume a certain amount of gas. The number of iterations in a loop can grow beyond

the block gas limit which can cause the complete contract to be stalled at a certain

point. As a consequence, the function will not be executable, resulting in a Denial of

Service of removeTrustedPosition.

Assets:
contracts/accountingManager/registry.sol

contracts/helpers/TVLHelper.sol

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [1,2]: 1

Complexity [0-2]: 1

Final Score: 3.3 [Medium]

Recommendations

Remediation: Consider adding a limit to the size of vault.holdingPositions. Alternatively,

introduce an array indexation to the arguments of reported functions, so that only a

certain interval of the arrays will be processed.

Remediation (revised commit: 59dc654): this issue was mitigated by the Noya team

by limiting the amount of holding positions the registry can track via

maxNumHoldingPositions. This variable is set to 20 by default, and can be updated

using setMaxNumHoldingPositions, which allows the upgrade of the holding

positions amounts up to a hard cap of MAX_NUM_HOLDING_POSITIONS (constant state

variable).

The function updateHoldingPositions will check that maxNumHoldingPositions is

not surpassed.

Additional testing was performed by the Noya team to make sure the holding positions

will not reach the block gas limit before the hard cap of 40 holding positions, although

31

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/6924e2b3-74db-4824-aa47-578a7ad0131f

the tests were not provided.

32

F-2024-1709 - The Keepers contract is not EIP712 compliant - Low

Description: According to the EIP-712 standard, for data structures that will be a part of the signing

message, a typehash must be defined and signed. However, in the current

implementation of the Keepers contract, the TXTYPE_HASH of the data structure is not

included in the generation of the txInputHash value, which can be seen in the code

snippet below. Moreover, the number of parameters used in the txInputHash is different

from the number of the types in the TXTYPE_HASH.

function execute(

address[] memory destination,

bytes[] memory data,

uint256[] memory gasLimit,

address executor,

bytes32[] memory sigR,

bytes32[] memory sigS,

uint8[] memory sigV

) public {

require(isOwner[msg.sender]);

require(sigR.length == threshold);

require(sigR.length == sigS.length && sigR.length == sigV.length);

require(executor == msg.sender);

{

bytes32 txInputHash = keccak256(abi.encode(nonce, destination, data, gasLimit, ex

ecutor));

bytes32 totalHash = keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(),

txInputHash));

address lastAdd = address(0);

for (uint256 i = 0; i < threshold; i++) {

address recovered = ecrecover(totalHash, sigV[i], sigR[i], sigS[i]);

require(recovered > lastAdd && isOwner[recovered]);

lastAdd = recovered;

}

nonce++;

}

for (uint256 i = 0; i < destination.length; i++) {

(bool success,) = destination[i].call{ gas: gasLimit[i] }(data[i]);

require(success, "Transaction execution reverted.");

}

}

As a consequence, the issue can lead to problems with the signature verification.

Assets:
contracts/governance/Keepers.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 4

Impact [1-5]: 3

Exploitability [1,2]: 2

Complexity [0-2]: 1

Final Score: 2.21 [Low]

Recommendations

Remediation: It is recommended to define a proper TXTYPE_HASH for the singing data and include it in

the txInputHash generation.

Remediation (revised commit: 774997c): The TXTYPE_HASH now contains the

deadline parameter. The parameters in the txInputHash generation adhere to the

elements in the defined TXTYPE_HASH. The TXTYPE_HASH is included in the generation

of the txInputHash.

33

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/f7ff5a3c-d76d-4228-9ec7-f85de67b48bf
https://eips.ethereum.org/EIPS/eip-712

F-2024-1713 - The usage of the precompile ecrecover can lead to signature

mailability - Low

Description: The function execute() is found to be vulnerable to a signature malleability issue. This

vulnerability stems from the function's inability to discern between legitimately unique

signatures and those that have been manipulated but are still considered valid by the

Ethereum blockchain's signature verification standards. By exploiting this flaw, one of

the multi-signature wallet owners can create signatures that will be accepted by the

system, enabling unauthorized and repetitive transactions. The vulnerable piece of code

can be found below.

function execute(

address[] memory destination,

bytes[] memory data,

uint256[] memory gasLimit,

address executor,

bytes32[] memory sigR,

bytes32[] memory sigS,

uint8[] memory sigV

) public {

require(isOwner[msg.sender]);

require(sigR.length == threshold);

require(sigR.length == sigS.length && sigR.length == sigV.length);

require(executor == msg.sender);

{

bytes32 txInputHash = keccak256(abi.encode(nonce, destination, data, gasLimit, ex

ecutor));

bytes32 totalHash = keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(),

txInputHash));

address lastAdd = address(0);

for (uint256 i = 0; i < threshold; i++) {

address recovered = ecrecover(totalHash, sigV[i], sigR[i], sigS[i]);

require(recovered > lastAdd && isOwner[recovered]);

lastAdd = recovered;

}

nonce++;

}

for (uint256 i = 0; i < destination.length; i++) {

(bool success,) = destination[i].call{ gas: gasLimit[i] }(data[i]);

require(success, "Transaction execution reverted.");

}

}

Assets:
contracts/governance/Keepers.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [1,2]: 2

Complexity [0-2]: 2

Final Score: 2.12 [Low]

Recommendations

Remediation: To enhance the security of your Solidity smart contracts and mitigate the risk of

signature malleability attacks, it is advisable to use OpenZeppelin's ECDSA library

instead of the built-in ecrecover function. The ECDSA library provides robust and

reliable signature verification, reducing the vulnerability to replay attacks and ensuring

the integrity of the contract interactions.

Remediation (revised commit: 6deba54): The EVM precompile ecrecover() was

replaced with OpenZeppelin's ECDSA.recover().

34

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/85b61641-0659-42ae-a6cf-ace5edc22d7d
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol#L125-L128

F-2024-1760 - Direct reset of the minimumHealthFactor allows to bypass the

MINIMUM_HEALTH_FACTOR check - Low

Description: To update the minimumHealthFactor value, the following requirement

_minimumHealthFactor > MINIMUM_HEALTH_FACTOR should be followed. However,

in the constructor() of SiloConnector.sol contract, it doesn't happen. As a

consequence, the necessary check is bypassed, which allows the

minimumHealthFactor to be smaller than MINIMUM_HEALTH_FACTOR.

Assets:
contracts/connectors/SiloConnector.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 5

Impact [1-5]: 2

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 2.3 (Low)

Recommendations

Remediation: It is recommended to implement the necessary condition _minimumHealthFactor >

MINIMUM_HEALTH_FACTOR to ensure that the value of the _minimumHealthFactor is

in the correct range.

Remediation (revised commit: bee7c27): the value of minimumHealthFactor was set

in the constructor to the default MINIMUM_HEALTH_FACTOR.

35

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/8cbfc96c-df7a-4f01-b68a-09e0d05c895d

F-2024-1795 - Deposit limit check counts deposited amount twice - Low

Description: The deposit method includes a check to limit the amount of tokens deposited, which is

calculated as follows:

if (TVL() + amount > depositLimitTotalAmount) {

revert NoyaAccounting_TotalDepositLimitExceeded();

}

However, the function TVL() included in the check already includes the deposited

amount via balanceOf(address(this)), resulting in a duplicity of amount.

function TVL() public view returns (uint256) {

return TVLHelper.getTVL(vaultId, registry, address(baseToken)) + baseToken.balanc

eOf(address(this)) - depositQueue.totalAWFDeposit;

}

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 3

Impact [1-5]: 2

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 2.08 [Low]

Recommendations

Remediation: It is recommended to delete amount from the check, as follows:

if (TVL() > depositLimitTotalAmount) {

revert NoyaAccounting_TotalDepositLimitExceeded();

}

Remediation (revised commit: bee7c27): the excess amount was deleted from the

check as recommended.

36

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/4b504103-d5d0-4579-a7b7-52067e73d6b4

F-2024-1808 - Missing access control in burning allow shares supply

manipulation - Low

Description: The function burnShares allows any caller to burn their own shares. Although this

functionality is intended to be called by the feeReceiver it does not have any access

control mechanism:

function burnShares(uint256 amount) public {

_burn(msg.sender, amount);

}

Therefore, any user can use this method to burn their own shares. This will not cause

major problems but will modify the desired behavior of the system by affecting the

deposit and withdraw amounts, which depend on the total supply of shares.

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 2.08 [Low]

Recommendations

Remediation: It is recommended to introduce an access control mechanism that only allow calls from

intended addresses, such as the fee receiver.

Remediation (revised commit: bee7c27): the issue was mitigated after the following

explanation from the Noya team:

Although burning the shares will effect the total supply of shares, it won't have

any negative effects on the functionality of the deposit and withdraw

functions. Any user might want to burn the shares in future. It doesn't make any

problem in the calculation of the share price, it just increases the share price.

37

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/7ed6b020-7ee0-4ad1-a40e-1cb57f777f89

F-2024-1833 - Update holding position can be bypassed during bridge operation

- Low

Description: The function executeBridge in SwapAndBridgeHandler and the function

performBridgeAction in LifiImplementation do not update the corresponding

holding position when called directly.

When the protocol performs a bridge transaction, the regular flow is

OmnichainLogic.startBridgeTransaction →

SwapAndBridgeHandler.executeBridge →

LifiImplementation.performBridgeAction. When going through this process, the

holding position will be updated via _updateTokenInRegistry:

function startBridgeTransaction(BridgeRequest memory bridgeRequest) public onlyMa

nager {

...

swapHandler.executeBridge(bridgeRequest);

_updateTokenInRegistry(bridgeRequest.inputToken);

}

However, both executeBridge and performBridgeAction are external functions

and, as such, they can be called directly, bypassing the update holding position check.

Assets:
contracts/helpers/SwapHandler/GenericSwapAndBridgeHandler.sol

contracts/helpers/SwapHandler/Implementaions/LifiImplementation.sol

Status: Mitigated

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 2.08 [Low]

Recommendations

Remediation: It is recommended to add a call to _updateTokenInRegistry in both executeBridge

and performBridgeAction.

Mitigated: this issue was determined mitigated with the following explanation from

Noya

SwapAndBridgeHandler contract and LifiImplementation contract are not

supposed to hold any positions. They don't belong to any specific vault and all

vaults can use these contracts. So if an external contract is calling these two

contracts, it's not effecting any vaults in the registry

38

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/a91fe63b-d9bb-4f24-b52a-d40983cd2553

F-2024-1836 - Use of transfer instead of call to send native assets - Low

Description: The functions rescue and rescueFunds uses the built-in transfer function for

transferring native tokens.

The transfer function was commonly used in earlier versions of Solidity for its

simplicity and automatic reentrancy protection. However, it was identified as potentially

problematic due to its fixed gas limit of 2300.

The usage of transfer function can lead to unintended function call revert when the

receiving contract's receive or fallback functions require more than 2300 Gas for

processing.

Assets:
contracts/accountingManager/AccountingManager.sol

contracts/helpers/SwapHandler/Implementaions/LifiImplementation.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 4

Exploitability [1,2]: 2

Complexity [0-2]: 0

Final Score: 2.08 [Low]

Recommendations

Remediation: It is recommended to use built-in call function instead of transfer() to transfer

native assets. This method does not impose a gas limit, it provides greater flexibility and

compatibility with contracts having more complex business logic upon receiving the

native tokens. When working with then call function ensure that its execution is

successful by checking the returned boolean value. It is also recommended to fallow the

Check-Effects-Interactions (CEI) pattern in every case to prevent reentrancy issues.

Remediation (revised commit: bee7c27): the reported transfer methods were

updated to call as recommended.

39

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/7a683adc-63ae-4076-b7bd-d16608b8ad66

F-2024-1843 - Missing checks for the zero address - Low

Description: In Solidity, the Ethereum address 0x00

is known as the "zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an invalid or non-

existent address. The "

Missing zero address control" issue arises when a Solidity smart contract does not

properly check or prevent interactions with the zero address, leading to unintended

behavior.

For instance, a contract might allow tokens to be sent to the zero address without any

checks, which essentially burns those tokens as they become irretrievable. While

sometimes this is intentional, without proper control or checks, accidental transfers

could occur.

Assets:
contracts/accountingManager/AccountingManager.sol

contracts/accountingManager/NoyaFeeReceiver.sol

contracts/accountingManager/registry.sol

contracts/connectors/AaveConnector.sol

contracts/connectors/AerodromeConnector.sol

contracts/connectors/BalancerConnector.sol

contracts/connectors/CompoundConnector.sol

contracts/connectors/CurveConnector.sol

contracts/connectors/FraxConnector.sol

contracts/connectors/LidoConnector.sol

contracts/connectors/MaverickConnector.sol

contracts/connectors/MorphoBlueConnector.sol

contracts/connectors/PancakeswapConnector.sol

contracts/connectors/PendleConnector.sol

contracts/connectors/PrismaConnector.sol

contracts/connectors/SiloConnector.sol

contracts/connectors/StargateConnector.sol

contracts/governance/NoyaGovernanceBase.sol

contracts/governance/TimeLock.sol

contracts/helpers/LZHelpers/LZHelperReceiver.sol

6 more asset(s) affected

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 2

Exploitability [1-2]: 1

Complexity [0-2]: 0

Final Score: 2.0 (Low)

Recommendations

Remediation: It is strongly recommended to implement checks to prevent the zero address from being

set during the initialization of contracts. This can be achieved by adding require

statements that ensure address parameters are not the zero address.

Remediation (revised commit: 6f42e71): The necessary address(0) checks have

been added to the aforementioned assets.

40

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/dca234ec-6719-4987-a43a-be12ca1a9e45

F-2024-1851 - Missing return value check for tokens transfers may lead to

unexpected behavior - Low

Description: Both transfer and transferFrom ERC20 functions are called to transfer tokens.

However, a return value check is required for these calls.

Not all ERC20 tokens are guaranteed to revert on failure; some may return a boolean

value (false) instead. If the system interacts with such tokens, a failed transfer would

not cause the transaction to revert, potentially leading to discrepancies in the

contract's state.

Other ERC20 do not return anything at all when calling transfer and transferFrom.

Therefore, every call will be reverted when the return value is checked.

Assets:
contracts/connectors/PendleConnector.sol

contracts/connectors/BalancerFlashLoan.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [1,2]: 2

Complexity [0-2]: 1

Final Score: 2.2 [Low]

Recommendations

Remediation: Implement the SafeERC20 library to check the return value of the calls to ERC20

transfer and transferFrom, as well as interacting safely with tokens that do not

return anything at all.

Remediation (revised commit: bee7c27): the SafeERC20 library was implemented in

the reported contracts' calls to ERC20 transfer and transferFrom methods.

41

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/9fc895b3-a12a-4ea4-b003-9c90b9f3856a
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

F-2024-1860 - Missing revert statement causes the funds to be stuck in

AccountingManager if the connector is not enabled - Low

Description: The function AccountingManager::executeDeposit() ensures that the deposited

funds are not deposited to the inactive connector. However, when the connector is not

active, the function executeDeposit() doesn't revert, which leads to the situation

that the deposit request is processed, but the funds are still in the

AccountingManager.sol. The function can be seen in the code snippet below.

function executeDeposit(uint256 maxI, address connector, bytes memory addLPdata)

public onlyManager whenNotPaused {

uint256 firstTemp = depositQueue.first;

uint64 i = 0;

uint256 processedBaseTokenAmount = 0;

while (

depositQueue.middle > firstTemp

&& depositQueue.queue[firstTemp].calculationTime + depositWaitingTime <= block.ti

mestamp && i < maxI

) {

i += 1;

DepositRequest memory data = depositQueue.queue[firstTemp];

emit ExecuteDeposit(

firstTemp, data.receiver, block.timestamp, data.shares, data.amount, data.shares

* 1e18 / data.amount

);

// minting shares for receiver address

_mint(data.receiver, data.shares);

processedBaseTokenAmount += data.amount;

delete depositQueue.queue[firstTemp];

firstTemp += 1;

}

depositQueue.totalAWFDeposit -= processedBaseTokenAmount;

totalDepositedAmount += processedBaseTokenAmount;

if (registry.isAnActiveConnector(vaultId, connector) && processedBaseTokenAmount

> 0) {

uint256[] memory amounts = new uint256[](1);

amounts[0] = processedBaseTokenAmount;

address[] memory tokens = new address[](1);

tokens[0] = address(baseToken);

IConnector(connector).addLiquidity(tokens, amounts, addLPdata);

}

depositQueue.first = firstTemp;

}

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 3

Impact [1-5]: 3

Exploitability [0-2]: 2

Complexity [0-2]: 1

Final Score: 2.0 (Low)

Recommendations

Remediation: It is recommended to add the missing else scenario with a revert statement to the

AccountingManager::executeDeposit() to ensure that the deposit request is not

processed if the connector is not active.

Remediation (revised commit: bee7c27): the scenario in which the condition

registry.isAnActiveConnector(vaultId, connector) &&

42

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/256fd2dc-8f68-4384-b8aa-67d7a2921739

processedBaseTokenAmount > 0) is not fulfilled was implemented with a revert as

recommended.

43

Observation Details

F-2024-1426 - Missing two-step transfer of ownership introduces risks - Info

Description: Ownable2Step prevents the contract ownership from mistakenly being transferred to an

address that cannot handle it (e.g. due to a typo in the address), by requiring that the

recipient of the owner permissions actively accept via a contract call of its own.

Assets:
contracts/governance/Keepers.sol

contracts/helpers/SwapHandler/Implementaions/LifiImplementation.sol

Status: Fixed

Recommendations

Remediation: Consider using Ownable2Step instead of Ownable from OpenZeppelin Contracts to

enhance the security of your contract ownership management. This contract prevents

the accidental transfer of ownership to an address that cannot handle it, such as due to

a typo, by requiring the recipient of owner permissions to actively accept ownership via

a contract call. This two-step ownership transfer process adds an additional layer of

security to your contract's ownership management.

Remediation (revised commit: bee7c27): Ownable2Step was implemented as

recommended.

44

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/591ae60f-eb0a-47bb-af58-9f3feaa1b847
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3d7a93876a2e5e1d7fe29b5a0e96e222afdc4cfa/contracts/access/Ownable2Step.sol#L31-L56

F-2024-1430 - Missing events emitting for critical functions - Info

Description: Events allow capturing the changed parameters so that off-chain tools/interfaces can

register such changes with timelocks that allow users to evaluate them and consider if

they would like to engage/exit based on how they perceive the changes as affecting the

trustworthiness of the protocol or profitability of the implemented financial services.

The alternative of directly querying the on-chain contract state for such changes is not

considered practical for most users/usages.

Missing events do not promote transparency and if such changes immediately affect

users’ perception of fairness or trustworthiness, they could exit the protocol causing a

reduction in liquidity which could negatively impact protocol TVL and reputation.

Assets:
contracts/accountingManager/AccountingManager.sol

contracts/accountingManager/registry.sol

contracts/governance/Keepers.sol

contracts/helpers/BaseConnector.sol

contracts/helpers/OmniChainHandler/OmnichainLogic.sol

contracts/helpers/SwapHandler/GenericSwapAndBridgeHandler.sol

contracts/helpers/SwapHandler/Implementaions/LifiImplementation.sol

contracts/helpers/valueOracle/NoyaValueOracle.sol

contracts/helpers/valueOracle/oracles/ChainlinkOracleConnector.sol

Status: Fixed

Recommendations

Remediation: Consider emitting the corresponding events in the critical functions.

Remediation (revised commit: 92df0dc): The event emitting has been added to the

aforementioned assets

45

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/4d158fe8-3e10-4614-bcfa-4ee9d7c27244

F-2024-1714 - Default compiler behavior leads to the gas increase in the for loop

- Info

Description: Newer versions of the Solidity compiler will check for integer overflows and underflows

automatically. This provides safety but increases gas costs.

When an unsigned integer is guaranteed to never overflow, the unchecked feature of

Solidity can be used to save gas costs. A common case for this is for-loops using a

strictly less than comparison in their conditional statement.

Assets:
contracts/governance/Keepers.sol

contracts/helpers/SwapHandler/GenericSwapAndBridgeHandler.sol

Status: Fixed

Recommendations

Remediation: It is recommended to use an unchecked{++i;} operator to disable the default compiler

checks and save gas.

Remediation (revised commit: bee7c27): the unchecked operator was implemented

as recommended.

46

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/de5407ed-5c7f-4d3b-8205-5ab3080924f1

F-2024-1770 - Improper threshold violates the requirements of multi-signature

wallet - Info

Description: According to the definition of the multi-signature wallet, any transaction must be signed

by two or more signers. However, the current implementation of the Keepers contract

allows to set a threshold to 1, which means that the number of signatures that will be

used, will equal 1. The lack of validation can be seen in the code snippets below.

constructor(address[] memory _owners, uint8 _threshold) EIP712("Keepers", "1") Ow

nable(msg.sender) {

require(_owners.length <= 10 && _threshold <= _owners.length && _threshold != 0);

for (uint256 i = 0; i < _owners.length; i++) {

isOwner[_owners[i]] = true;

}

numOwners = _owners.length;

threshold = _threshold;

}

function updateOwners(address[] memory _owners, bool[] memory addOrRemove) public

onlyOwner {

uint256 numOwnersTemp = numOwners;

for (uint256 i = 0; i < _owners.length; i++) {

if (addOrRemove[i] && !isOwner[_owners[i]]) {

isOwner[_owners[i]] = true;

numOwnersTemp++;

} else if (!addOrRemove[i] && isOwner[_owners[i]]) {

isOwner[_owners[i]] = false;

numOwnersTemp--;

}

}

require(numOwnersTemp <= 10 && threshold <= numOwnersTemp && threshold != 0);

numOwners = numOwnersTemp;

}

and

function setThreshold(uint8 _threshold) public onlyOwner {

require(_threshold <= numOwners && _threshold != 0);

threshold = _threshold;

}

Assets:
contracts/governance/Keepers.sol

Status: Fixed

Recommendations

Remediation: It is recommended to ensure that the threshold of the Keepers contract will be bigger

than 1 to not violate the requirements of the multi-signature wallet.

Remediation (revised commit: bee7c27): a check was introduced into the

constructor, updateOwners and setThreshold methods to ensure the threshold is

bigger than 1 in order to comply with multi-signature.

47

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/bf7bf1dd-4599-47de-9e94-10c00f3e02ac

F-2024-1800 - Missing onERC721Received callback creates risks - Info

Description: To deal with ERC721 tokens securely, contracts or recipients should implement the

IERC721Receiver interface by implementing the onERC721Received callback function.

The callback is called every time the ERC721 token is transferred via the

safeTransferFrom(). It is a way of signaling back to the safeTransferFrom(), that

the recipient understands that it can deal with ERC721 and should implement the

necessary functionality to handle such tokens. Even though the previously mentioned

callback function cannot guarantee the safety of NFTs, it is recommended to be

followed.

Assets:
contracts/connectors/UNIv3Connector.sol

Status: Mitigated

Recommendations

Remediation: It is recommended to implement onERC721Received in all the contracts that have to

deal with NFT tokens.

Remediation: this issue was determinted Mitigated with the following feedback

provided by the Noya team:

Although this contract is working with NFT positions, it's not going to use (both

as the sender and receiver) the safeTransferFrom function. It's using

NonfungiblePositionManager that is handling the positions. And it's using the

_mint function which doesn't require onERC721Received.

Any contract that is inheriting from this contract (just like the pancakeSwap

example) can add this function for specific use cases. but it's not needed in

UNIv3Connector.

48

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/e64bce16-5189-4a06-a5b8-82b5a62772a2
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC721/IERC721Receiver.sol
https://portal.hacken.io/App/Assets/Details/ca76819a-b87a-4405-ad26-b56681d7732b

F-2024-1801 - Performance fees only works on increasing vault valuation - Info

Description: Due to the following check in recordProfitForFee, the performance fee will only

work when the vault underlying tokens valuation increases:

if (storedProfitForFee < totalProfitCalculated) {

return;

}

The reason is that, when calling collectPerformanceFees, the previous value of

storedProfitForFee is assigned to totalProfitCalculated and, therefore, only

increasing storedProfitForFee will pass the check.

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Mitigated

Recommendations

Remediation: Consider if this is the intended behaviour of the system.

Remediation: this issue was marked as Mitigated after Noya's team feedback below:

This is intended because the receiver is eligible for performance fee if the profit

has increased.

49

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/920df52d-0062-4ea6-8329-4538567c3776

F-2024-1827 - Loop for storage array length wastes extra Gas - Info

Description: In removeTrustedPosition, a loop iterates through the storage array length

vault.holdingPositions.length, wasting an unnecessary amount of Gas.

Since every iteration will read the storage variable to calculate the length, the amount of

Gas can be reduced by caching the length into a new memory variable to be iterated.

Assets:
contracts/accountingManager/registry.sol

Status: Fixed

Recommendations

Remediation: It is recommended to cache the array length vault.holdingPositions.length into

a new memory variable to be iterated.

Remediation (revised commit: bee7c27): the vault.holdingPositions.length

was cached into a new memory variable length and used within the loop as

recommended.

50

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/df991772-e382-4797-a94a-1bcc6320ee6f

F-2024-1840 - The direct usage of the Aerdrome Pool's functions leads to the

extra gas and creates security risks - Info

Description: Direct usage of the Pool.mint() and Pool.burn() functions causes a risk of

frontrunning. Furthermore, the skim() function, which is used to get the stuck ERC20

tokens from the pool contract, costs additional gas. It can be seen in the code snippet

below.

function supply(address pool, uint256 amount0, uint256 amount1, uint256 minBalanc

e) public onlyManager {

bytes32 positionId = registry.calculatePositionId(address(this), AERODROME_POSITI

ON_TYPE, abi.encode(pool));

IERC20(IPool(pool).token0()).safeTransfer(pool, amount0);

IERC20(IPool(pool).token1()).safeTransfer(pool, amount1);

uint256 liquidity = IPool(pool).mint(address(this));

registry.updateHoldingPosition(vaultId, positionId, "", "", false);

IPool(pool).skim(address(this));

_updateTokenInRegistry(IPool(pool).token0());

_updateTokenInRegistry(IPool(pool).token1());

if (liquidity < minBalance) revert IConnector_InvalidAmount();

}

The following approach cannot be considered a best practice due to the previously

mentioned reasons.

Assets:
contracts/connectors/AerodromeConnector.sol

Status: Fixed

Recommendations

Remediation: It is recommended to directly interact with the Router contract.

Remediation (revised commit: 4847503): The AerodromeConnector now uses

IRouter to add and remove liquidity in the AerodromeConnector::supply() and

AerodromeConnector::withdraw() functions instead of the direct usage of the

IPool.mint() and IPool.burn().

51

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/5f8ded4d-2b6f-4ba8-9c6c-3788c82da186
https://github.com/aerodrome-finance/contracts/blob/main/contracts/Router.sol

F-2024-1844 - Checks-Effects-Interactions Pattern Violation - Info

Description: State variables are updated after the external calls to the token contract.

As explained in Solidity Security Considerations, it is best practice to follow the checks-

effects-interactions pattern when interacting with external contracts to avoid

reentrancy-related issues.

The following assets are affected by this pattern violation:

contracts/accountingManager/AccountingManager.sol: deposit,

executeDeposit, retrieveTokensFroWithdraw, recordProfitForFee,

checkIfTVLHasDroped.

contracts/accountingManager/registry.sol: addTrustedPosition.

contracts/helpers/OmniChainHandler/OmnichainLogic.sol:

startBridgeTransaction.

contracts/helpers/SwapHandler/GenericSwapAndBridgeHandler.sol:

executeSwap.

contracts/helpers/BaseConnector.sol: sendTokensToTrustedAddress,

addLiquidity, swapHoldings.

contracts/connectors/BalancerFlashLoan.sol: _paybackFlashLoan,

receiveFlashLoan.

contracts/connectors/CurveConnector.sol: openCurvePosition,

decreaseCurvePosition, harvestRewards, harvestPrismaRewards,

harvestConvexRewards.

contracts/connectors/BalancerConnector.sol: harvestAuraRewards,

openPosition, decreasePosition.

contracts/connectors/FraxConnector.sol: borrowAndSupply, withdraw,

repay.

contracts/connectors/GearBoxV3.sol: closeAccount, executeCommands.

contracts/connectors/LidoConnector.sol: deposit, requestWithdrawals,

claimWithdrawal.

contracts/connectors/MaverickConnector.sol: stake, unstake,

addLiquidityInMaverickPool, removeLiquidityFromMaverickPool.

contracts/connectors/PendleConnector.sol: supply, mintPTAndYT,

depositIntoMarket, swapExactPTForSY, burnLP, decreasePosition,

claimRewards.

contracts/connectors/AaveConnector.sol: supply, borrow, repay,

withdrawCollateral.

contracts/connectors/AerodromeConnector.sol: supply, withdraw.

contracts/connectors/CompoundConnector.sol: supply,

withdrawOrBorrow, claimRewards.

contracts/connectors/PancakeswapConnector.sol: updatePosition,

withdraw.

contracts/connectors/PrismaConnector.sol: openTrove, adjustTrove,

closeTrove.

contracts/connectors/SiloConnector.sol: deposit, withdraw, borrow,

repay.

contracts/connectors/UNIv3Connector.sol: openPosition,

decreasePosition, increasePosition, collectAllFees.

contracts/connectors/StargateConnector.sol: depositIntoStargatePool,

withdrawFromStargatePool, claimStargateRewards.

Status: Mitigated

Recommendations

Remediation: Follow the checks-effects-interactions pattern when interacting with external contracts.

If this approach is not possible, consider using a reentrancy guard.

Remediation (revised commit 119f7f3): the OpenZeppelin nonReentrant modifier was

added to all reported functions with the exception of

BaseConnector::sendTokensToTrustedAddresses and

BalancerFlashLoan::receiveFlashLoan which would break the logic of the

52

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/7b62f930-0df4-4ffb-bb8b-f23448c844ca
https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

contract as explained by the Noya team. Due to the presence of access control

mechanisms in both functions that limit the access to those functions, this issue was

Mitigated, and the adequate usage of those functions relays on the Noya protocol.

53

F-2024-1845 - High oracle refresh check can lead to outdated pricing - Info

Description: The age threshold used for the chainlink oracle is set to 5 days by default.

Given the case that many chainlink data feeds provide data in intervals close to 2h, it is

possible that assets will provide outdated data after 5 days.

Remediation (revised commit: bee7c27): the default refresh rate

chainlinkPriceAgeThreshold was set to 2 hours. Additionally, the function

updateChainlinkPriceAgeThreshold is implemented in order to update the refresh

rate when necessary.

Assets:
contracts/helpers/valueOracle/oracles/ChainlinkOracleConnector.sol

Status: Fixed

Recommendations

Remediation: Consider decreasing chainlinkPriceAgeThreshold to values closer than the data

feed provider.

54

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/fb5be922-2c24-42d9-8d35-f710983e6165

F-2024-1849 - Unused return value - Info

Description: The function updateHoldingPosition performs a call to

isPositionTrustedForConnector but does not use it's return value.

Assets:
contracts/accountingManager/registry.sol

Status: Fixed

Recommendations

Remediation: Use the return value of isPositionTrustedForConnector.

Remediation (revised commit: bee7c27): the return value of

isPositionTrustedForConnector is now implemented as a safe check into

updateHoldingPosition.

55

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/c9e3f4b4-85a9-43ea-9b3e-a83011dc9098

F-2024-1852 - Missing argument names in function - Info

Description: The function sendTokensToTrustedAddress uses several unnamed arguments.

function sendTokensToTrustedAddress(address token, uint256 amount, address, bytes

calldata)

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Recommendations

Remediation: It is recommended to name all function arguments.

Remediation (revised commit: bee7c27): the reported function arguments were

named as recommended.

56

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/528be72a-f873-4d2b-b94e-e4beefce8710

F-2024-1853 - Sub-optimal management of fees values - Info

Description: The fees implemented in the vaults (i.e. withdrawFee, performanceFees and

managementFee) are not implemented in the constructor. Therefore, functions using

fees may be used without the required values.

In addition, the values that can be set via setFees are not limited, allowing for up to

100% fees. This allows abusive behaviour and should not be allowed.

function setFees(uint256 _withdrawFee, uint256 _performanceFee, uint256 _manageme

ntFee) public onlyMaintainer {

withdrawFee = _withdrawFee;

performanceFee = _performanceFee;

managementFee = _managementFee;

emit FeeRatesChanged(_withdrawFee, _performanceFee, _managementFee);

}

Assets:
contracts/accountingManager/AccountingManager.sol

Status: Fixed

Recommendations

Remediation: Call setFees in the constructor and implement a limit to the values they can reach.

Remediation (revised commit: bee7c27): the fee values are now set within the

constructor. Additionally, maximum fee values were implemented as the constants

WITHDRAWAL_MAX_FEE, MANAGEMENT_MAX_FEE and PERFORMANCE_MAX_FEE. A check

was introduced in both constructor and setFees methods to make sure the fees

cannot surpass their maximum value.

57

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/283545ee-b294-447b-9dd8-79d3516ab84c

F-2024-1854 - Non-standard filename - Info

Description: The file registry.sol is not written in the recommended manner: Registry.sol.

Assets:
contracts/accountingManager/registry.sol

Status: Fixed

Recommendations

Remediation: Rename registry.sol to Registry.sol.

Remediation (revised commit: bee7c27): the reported file was renamed

Registry.sol as recommended.

58

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/3202ac7c-7c1b-48ae-a60c-7a373064d976

F-2024-1855 - Missing and incorrect NatSpec - Info

Description: The project NatSpec, implemented for both contracts and functions, is not sufficient.

Most of the functions do not have a NatSpec, or have an oldest NatSpec, or have an

incorrect NatSpec.

Status: Accepted

Recommendations

Remediation: Implement an up-to-date NatSpec in all contracts and functions.

Remediation (revised commit: bee7c27): the NatSpec was improved but it is still

limited. Contracts such as NoyaTimeLock and Watchers and WETH_Oracle do not

have any NatSpec. The majority of the contracts do not have a contract description

NatSpec. The connectors have a superficial NatSpec that describes the function name,

but not how the function works.

59

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/46f4d4a2-20b3-420f-af9b-fed85f442f11

F-2024-1856 - Incorrect return value - Info

Description: The function updateHoldingPosition returns 100 when a holding position is

removed. However, this value is not checked or has any use in the protocol.

function updateHoldingPosition() public vaultExists(vaultId) returns (uint256) {

...

if (removePosition) {

if (positionIndex < vault.holdingPositions.length - 1) {

vault.holdingPositions[positionIndex] = vault.holdingPositions[vault.holdingPosit

ions.length - 1];

vault.isPositionUsed[keccak256(

abi.encode(

vault.holdingPositions[positionIndex].calculatorConnector,

vault.holdingPositions[positionIndex].positionId,

vault.holdingPositions[positionIndex].data

)

)] = positionIndex;

}

vault.holdingPositions.pop();

vault.isPositionUsed[holdingPositionId] = 0;

emit HoldingPositionUpdated(vaultId, _positionId, _data, additionalData, removePo

sition, positionIndex);

return 100;

}

...

}

This scenario is present in both registry and GearBoxV3 contracts.

function _getPositionTVL(HoldingPI memory p, address base) public view override r

eturns (uint256 tvl) {

...

if (d.totalDebtUSD > d.totalValueUSD) {

return 100;

}

return _getValue(address(840), base, (d.totalValueUSD - d.totalDebtUSD));

}

Assets:
contracts/accountingManager/registry.sol

Status: Fixed

Recommendations

Remediation: Consider deleting the return value 100.

Remediation (revised commit: bee7c27): the function _getPositionTVL now returns

0 since the reported branch should not be executed. The function

updateHoldingPosition now returns type(uint256).max, indicating that the

position doesn't exist anymore in the array.

60

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/2d27a62e-3ea4-4dce-8177-f6e52431be34

F-2024-1858 - Multiplication after division may result in precision loss - Info

Description: Due to Solidity characteristic rounding values, it is not recommended to perform

multiplications after divisions since it can lead to loss of precision.

This is present in _getHealthFactor for Frax connector and in getCollBlanace for

Compound connector,

function _getHealthFactor(IFraxPair _fraxlendPair, uint256 _exchangeRate) interna

l view virtual returns (uint256) {

...

uint256 currentPositionLTV =

(((_borrowerAmount * _exchangeRate) / EXCHANGE_PRECISION) * LTV_PRECISION) / _col

lateralAmount;

...

}

function getCollBlanace(IComet comet, bool riskAdjusted) public view returns (uin

t256 CollValue) {

...

uint256 collateralValueInVirtualBase =

collateralBalance * collateralPriceInVirtualBase / info.scale * comet.baseScale()

/ basePrice;

...

}

Assets:
contracts/connectors/CompoundConnector.sol

contracts/connectors/FraxConnector.sol

Status: Fixed

Recommendations

Remediation: Perform multiplications before divisions to avoid precision loss.

Remediation (revised commit: bee7c27): the reported functions were updated so that

multiplications are performed before of divisions, avoiding precision loss.

61

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/cb26fa23-41fd-4a6e-b933-3264a6d0b281

F-2024-1861 - Missing expiration timestamp can lead to unexpected results - Info

Description: Advanced protocols like Automated Market Makers (AMMs) can allow users to specify a

deadline parameter that enforces a time limit by which the transaction must be

executed. Without a deadline parameter, the transaction may sit in the mempool and be

executed at a much later time potentially resulting in a worse price for the user.

Protocols shouldn't set the deadline to block.timestamp as a validator can hold the

transaction and the block it is eventually put into will be block.timestamp, so this

offers no protection.

The transaction deadline was set to block.timestamp in the functions that can be

seen in the code snippets below.

UNIv3Connector::openPosition()

function openPosition(MintParams memory p) external onlyManager returns (uint256

tokenId) {

bytes32 positionId =

registry.calculatePositionId(address(this), UNI_LP_POSITION_TYPE, abi.encode(p.to

ken0, p.token1));

p.recipient = address(this);

p.deadline = block.timestamp;

// Approve NonfungiblePositionManager to spend `token0` and `token1`.

_approveOperations(p.token0, address(positionManager), p.amount0Desired);

_approveOperations(p.token1, address(positionManager), p.amount1Desired);

// Supply liquidity to pool.

(tokenId,,,) = positionManager.mint(p);

bytes memory positionData = abi.encode(tokenId);

registry.updateHoldingPosition(

vaultId, positionId, positionData, abi.encode(p.tickLower, p.tickUpper, p.fee), f

alse

);

_updateTokenInRegistry(p.token0);

_updateTokenInRegistry(p.token1);

}

MaverickConnector::addLiquidityInMaverickPool()

function addLiquidityInMaverickPool(MavericAddLiquidityParams calldata p) externa

l onlyManager {

uint256 sendEthAmount = p.ethPoolIncluded ? p.tokenARequiredAllowance : 0;

_approveOperations(p.pool.tokenA(), maverickRouter, p.tokenARequiredAllowance); /

/ TODO: check token A is eth

_approveOperations(p.pool.tokenB(), maverickRouter, p.tokenBRequiredAllowance);

// add liquidity

uint256 tokenId;

{

(tokenId,,,) = IMaverickRouter(maverickRouter).addLiquidityToPool{ value: sendEth

Amount }(

p.pool, 0, p.params, p.minTokenAAmount, p.minTokenBAmount, block.timestamp

);

}

registry.updateHoldingPosition(

vaultId, registry.calculatePositionId(address(this), MAVERICK_LP, abi.encode(p.po

ol)), "", "", false

);

_updateTokenInRegistry(p.pool.tokenA());

_updateTokenInRegistry(p.pool.tokenB());

}

MaverickConnector::removeLiquidityFromMaverickPool()

function removeLiquidityFromMaverickPool(

IMaverickPool pool,

uint256 tokenId,

RemoveLiquidityParams[] calldata params,

uint256 minTokenAAmount,

uint256 minTokenBAmount

) external {

IMaverickPosition position = IMaverickRouter(maverickRouter).position();

position.approve(maverickRouter, tokenId);

IMaverickRouter(maverickRouter).removeLiquidity(

pool, address(this), tokenId, params, minTokenAAmount, minTokenBAmount, block.tim

estamp

);

registry.updateHoldingPosition(

vaultId, registry.calculatePositionId(address(this), MAVERICK_LP, abi.encode(pool

)), "", "", true

);

_updateTokenInRegistry(pool.tokenA());

_updateTokenInRegistry(pool.tokenB());

}

Assets:
contracts/connectors/MaverickConnector.sol

contracts/connectors/UNIv3Connector.sol

62

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/fdbefac1-647f-4dc1-95f7-d5bbd36760bc

Status: Fixed

Recommendations

Remediation: Introduce a proper deadline parameter for the previously mentioned functions.

Remediation (revised commit: 774997c): The deadline is not hardcoded anymore and

now is passed as a parameter to the functions UNIv3Connector::openPosition(),

MaverickConnector::addLiquidityInMaverickPool() and

MaverickConnector::removeLiquidityFromMaverickPool().

63

F-2024-1863 - LifiImplementation contract is incompatible with non-standard

ERC20 tokens - Info

Description: Some tokens (for example USDT) do not follow the ERC20 standard correctly and do not

revert a bool on approve call. Such tokens are incompatible with the

LifiImplementation contract as the approve calls in function

LifiImplementation::_setAllowance() might revert or return bool values, which

are not validated.

function _setAllowance(IERC20 token, address spender, uint256 amount) internal {

if (_isNative(token)) {

return;

}

if (spender == address(0)) {

revert SpenderIsInvalid();

}

uint256 allowance = token.allowance(address(this), spender);

if (allowance < amount) {

if (allowance != 0) {

token.approve(spender, 0);

}

token.approve(spender, type(uint256).max);

}

}

Status: Fixed

Recommendations

Remediation: Use SafeERC20's forceApprove() instead.

Remediation (revised commit: bee7c27): the SafeERC20's forceApprove was

implemented as recommended.

64

https://portal.hacken.io/App/Projects/Details/9175b1e9-073c-468e-bcca-8539526bd27f/Finding/80f3bb22-8332-4b23-b2ab-af14f9adea9b
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/cb2aaaa04a292887c49839cd958b08a83979d746/contracts/token/ERC20/utils/SafeERC20.sol#L76

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the writing of

this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the

intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code. The

report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do not consider this

report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other

contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that you

should not rely on this report only — we recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated

versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and

other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

65

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact, Exploitability

and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited scope,

but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to asset

loss. Contradictions and requirements violations. Major deviations from best practices are also in this

category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a significant

impact on code execution, do not affect security score but can affect code quality score.

66

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/Noya-ai/noya-vault-contracts

Audited commit 95fcb52

Remediation commit 6f42e71

Whitepaper https://docs.noya.ai/

Requirements https://github.com/Noya-ai/noya-vault-contracts/README.md

Technical Requirements https://github.com/Noya-ai/noya-vault-contracts/README.md

Contracts in Scope

./contracts/accountingManager/AccountingManager.sol

./contracts/accountingManager/NoyaFeeReceiver.sol

./contracts/accountingManager/registry.sol

./contracts/governance/Keepers.sol

./contracts/governance/NoyaGovernanceBase.sol

./contracts/governance/TimeLock.sol

./contracts/governance/Watchers.sol

./contracts/helpers/LZHelpers/LZHelperReceiver.sol

./contracts/helpers/LZHelpers/LZHelperSender.sol

./contracts/helpers/OmniChainHandler/OmnichainLogic.sol

./contracts/helpers/OmniChainHandler/OmnichainManagerBaseChain.sol

./contracts/helpers/OmniChainHandler/OmnichainManagerNormalChain.sol

./contracts/helpers/SwapHandler/Implementaions/LifiImplementation.sol

./contracts/helpers/SwapHandler/GenericSwapAndBridgeHandler.sol

./contracts/helpers/valueOracle/oracles/ChainlinkOracleConnector.sol

./contracts/helpers/valueOracle/oracles/UniswapValueOracle.sol

./contracts/helpers/valueOracle/oracles/WETH_Oracle.sol

./contracts/helpers/valueOracle/NoyaValueOracle.sol

./contracts/helpers/BaseConnector.sol

./contracts/helpers/TVLHelper.sol

./contracts/connectors/BalancerFlashLoan.sol

./contracts/connectors/CurveConnector.sol

./contracts/connectors/BalancerConnector.sol

./contracts/connectors/FraxConnector.sol

./contracts/connectors/GearBoxV3.sol

./contracts/connectors/LidoConnector.sol

67

https://github.com/Noya-ai/noya-vault-contracts
https://docs.noya.ai/
https://github.com/Noya-ai/noya-vault-contracts/README.md
https://github.com/Noya-ai/noya-vault-contracts/README.md

Contracts in Scope

./contracts/connectors/MaverickConnector.sol

./contracts/connectors/MorphoBlueConnector.sol

./contracts/connectors/PendleConnector.sol

./contracts/connectors/AaveConnector.sol

./contracts/connectors/AerodromeConnector.sol

./contracts/connectors/CompoundConnector.sol

./contracts/connectors/PancakeswapConnector.sol

./contracts/connectors/PrismaConnector.sol

./contracts/connectors/SiloConnector.sol

./contracts/connectors/UNIv3Connector.sol

./contracts/connectors/StargateConnector.sol

68

