
Smart Contract Code

Review And Security

Analysis Report

Customer: warp.green

Date: 21/05/2024

We express our gratitude to The warp.green Team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

warp.green is a protocol that facilitates the communication of messages across supported

blockchains �Chia, Ethereum, and Base) through a trusted set of validators.

Platform: EVM

Language: Solidity

Tags: Bridge; Fungible Token; Permit Token; Signatures; Centralization; Upgradable

Timeline: 14/05/2024 � 21/05/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/warpdotgreen/cli/tree/master/contracts

Commit dddc8a5

2

https://hackenio.cc/sc_methodology
https://github.com/warpdotgreen/cli/tree/master/contracts

Audit Summary

10/10 10/10 100% 10/10
Security score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

7 4 1 2
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 2

Low 5

Vulnerability Status

F�2024�2948 � Front-Running Risk Due to Lack of Access Control in initializePuzzleHashes Mitigated

F�2024�2988 � Potential Fee Bypass in bridgeToChia and bridgeEtherToChia Functions Mitigated

F�2024�2987 � Incompatibility with Fee-On-Transfer and Rebasing Tokens in ERC20Bridge.sol Accepted

F�2024�2859 � Inadequate Signature Validation and Nonce Management in receiveMessage Fixed

F�2024�2950 � Unrestricted messageToll Updates Pose Risk of Unexpected Fee Changes Fixed

F�2024�2996 � Potential Failures in Ether Transfer Using transfer Function Fixed

F�2024�3062 � Lack of Minimum Amount Leads to Zero Transfer Fixed

3

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/0a8cdd84-81cb-49af-b908-fd4eb16035a2
https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/ac8243bf-7e23-4859-8668-1e6462233a90
https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/c9d48d07-1980-49de-a440-d3cccc6dbceb
https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/d53cc7e0-2360-4fad-9d77-d782565ba7a5
https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/f3001f6e-5b11-4d3c-8126-dfea890b9721
https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/a40f3b22-6daa-45a5-90fd-5a947adc4a97
https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/944c007c-4b23-40ba-9313-9a72f7d2e890

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for warp.green

Audited By Ivan Bondar

Approved By Ataberk Yavuzer

Website https://warp.green/ & https://docs.warp.green/

Changelog 17/05/2024 � Preliminary Report

21/05/2024 � Final Report

4

https://warp.green/
https://docs.warp.green/

Table of Contents

System Overview 6

Privileged Roles 7

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 11

Vulnerability Details 11

Observation Details 28

Disclaimers 36

Appendix 1. Severity Definitions 37

Appendix 2. Scope 38

System Overview

warp.green is a protocol that facilitates the communication of messages across supported

blockchains �Chia, Ethereum, and Base) through a trusted set of validators. Applications can integrate

with the protocol to enable cross-chain communication. At launch, two primary applications were

introduced: an ERC�20 bridge and a CAT bridge.

The warp.green protocol uses a set of smart contracts deployed on the blockchain to manage the

wrapping and unwrapping of assets and the sending and receiving of cross-chain messages.

The files in the scope:

ERC20Bridge.sol � Manages the bridging of ERC�20 tokens between Ethereum and Chia. It

handles the wrapping of ERC�20 tokens on Chia and unwrapping them back to the original

network.

Key Functions:

initializePuzzleHashes: Sets the puzzle hashes for burning and minting CATs on Chia.

receiveMessage: Receives and processes messages from the warp.green portal.

bridgeToChia: Bridges ERC�20 tokens to Chia.

bridgeEtherToChia: Bridges native Ether to Chia by wrapping it into milliETH.

bridgeToChiaWithPermit: Bridges ERC�20 tokens to Chia using a permit for gas-efficient

token approval and transfer.

MilliETH.sol � Implements an ERC�20 token (milliETH� which is equivalent to 1/1000th of one

ether. It allows the conversion between ether and milliETH.

Key Functions:

deposit: Mints milliETH tokens equivalent to the deposited ether value.

withdraw: Burns milliETH tokens and returns the equivalent amount of ether.

receive: Allows the contract to accept direct ether transfers and mints corresponding

milliETH tokens.

WrappedCAT.sol � Manages the wrapping of Chia Asset Tokens �CATs) into ERC�20 tokens on

Ethereum, allowing these CATs to be used within the Ethereum ecosystem.

Key Functions:

initializePuzzleHashes: Sets the puzzle hashes for locking and unlocking CATs on Chia.

receiveMessage: Processes messages from the warp.green portal to handle unwrapping

of CATs.

bridgeBack: Burns Wrapped CAT tokens and sends a message to unlock the original CAT

tokens on Chia.

Portal.sol � Handles the sending and receiving of cross-chain messages via a trusted set of

validators.

Key Functions:

sendMessage: Sends a cross-chain message to another blockchain.

receiveMessage: Receives and relays a cross-chain message from another blockchain.

rescueEther: Allows the owner to transfer ether owned by the contract to specified

addresses.

rescueAsset: Allows the owner to transfer ERC�20 tokens owned by the contract to

specified addresses.

updateSigner: Updates the authorization status of a signer (validator).

6

updateSignatureThreshold: Updates the threshold of required signatures for message

verification.

updateMessageToll: Updates the toll fee required to send messages.

IPortal.sol � Interface defining the functions and events for the warp.green portal contract.

IPortalMessageReceiver.sol � Interface defining the function for receiving messages from the

warp.green portal.

IWETH.sol � Interface defining the deposit and withdraw functions for WETH �Wrapped Ether).

Privileged roles

Portal.sol:

Owner (validator cold key multisig): can manage signers, signature thresholds, message tolls,

and assets held by the contract.

7

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation quality score is 10 out of 10.

Functional requirements have some gaps.

Basic system description is provided.

All roles in the system are described.

Use cases are described.

Technical description is detailed.

Run instructions are provided.

Technical specification is provided.

The NatSpec documentation is sufficient.

Code quality

The total Code quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 100% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative cases coverage is present.

Interactions by several users are tested.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 2 medium, and 5 low severity issues.

Out of these, 4 issues have been addressed and resolved, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

Dependency on Trusted Validators: The warp.green protocol relies on a trusted set of validators

to verify and relay cross-chain messages. This dependency introduces risks associated with

validator behavior and consensus. If validators fail to perform their duties correctly or act

maliciously, it could compromise the integrity of the bridge, leading to delays, message loss, or

incorrect message relays, ultimately affecting user trust and the protocol's reliability.

Administrative Control Over Protocol Parameters: The protocol's administrative roles, such as

the owner of the Portal contract, have the ability to modify key parameters, including message toll

fees, signer authorization, and signature thresholds. While these controls are necessary for

maintaining and updating the protocol, they also introduce risks of misuse or arbitrary changes

that could affect the protocol's stability and user trust. Users should remain vigilant about

potential adjustments and the impact on their interactions with the protocol.

Risk of Message Toll Adjustments: The message toll fee required to send messages via the

Portal can be updated by the owner. Sudden or significant increases in the toll fee could make it

more expensive for users to send cross-chain messages, potentially reducing the protocol's

usability and accessibility.

Absence of Time-lock Mechanisms for Critical Operations: The protocol currently does not

implement time-lock mechanisms for critical administrative operations, such as updating signers

or modifying toll fees. The absence of time-locks increases the risk of rapid and potentially

harmful changes being executed without sufficient review or the ability to revert actions.

Flexibility and Risk in Contract Upgrades: The use of upgradable contracts allows the protocol

to evolve and address issues promptly. However, this flexibility also introduces risks if the upgrade

processes are not properly secured. Unauthorized or malicious upgrades could compromise the

protocol's integrity.

Dependency on Off-chain Components: The sendMessage function in Portal.sol is responsible

for integrating other Dapps and sending messages from the EVM to the Chia network. The

warp.green protocol relies heavily on off-chain components and logic to process these messages.

This reliance introduces several risks:

Compromise of Off-chain Components: If the off-chain components are compromised, they

could lead to unauthorized message relays or message tampering.

Malfunction or Failures: Any malfunction or operational failure in the off-chain components

could result in message delivery delays, failures, or incorrect message processing.

Uncovered Vulnerabilities: Off-chain logic is not part of this audit, which means potential

vulnerabilities in the off-chain components remain unidentified and unaddressed.

Impact on Integrity and Security: Any issues with the off-chain logic can compromise the

overall integrity and security of the warp.green protocol. This could lead to security breaches

or loss of user assets.

Dynamic Chain Support: The protocol introduces the ability to dynamically update the list of

supported chains. While this provides flexibility in managing and maintaining cross-chain

interactions, it also introduces several risks:

Temporary Removal of Supported Chains: Chains that were previously supported can be

removed from the list of supported chains. This can result in bridged funds being stuck on the

bridged chain until support for that chain is reinstated.

Impact on User Assets: Users with assets bridged to or from a chain that is temporarily

unsupported may face delays in accessing or recovering their funds.

9

Operational Flexibility: This mechanism allows for the suspension of support for chains

undergoing maintenance or experiencing issues, providing operational flexibility. However,

users should be aware of this risk and stay informed about the status of chain support.

User Awareness: Users should be vigilant and regularly check the list of supported chains to

ensure their transactions are not affected by dynamic changes in chain support.

Solidity Version Compatibility and Cross-Chain Deployment: The project utilizes Solidity

version 0.8.20 or higher, which includes the introduction of the PUSH0 �0�5f) opcode. This

opcode is currently supported on the Ethereum mainnet but may not be universally supported

across other blockchain networks. Consequently, deploying the contract on chains other than the

Ethereum mainnet, such as certain Layer 2 �L2� chains or alternative networks, might lead to

compatibility issues or execution errors due to the lack of support for the PUSH0 opcode. In

scenarios where deployment on various chains is anticipated, selecting an appropriate Ethereum

Virtual Machine �EVM� version that is widely supported across these networks is crucial to avoid

potential operational disruptions or deployment failures.

10

Findings

Vulnerability Details

F-2024-2859 - Inadequate Signature Validation and Nonce

Management in receiveMessage - Medium

Description: The receiveMessage function processes cross-chain messages, verifying

signatures and ensuring the uniqueness of nonces. However, the function

does not verify the s value of ECDSA signatures, allowing for two valid s

values for each signature. This can lead to replay attacks or acceptance of

invalid signatures. Additionally, the nonce is checked only after signature

verification, leading to potential wasted computational resources if the

nonce is already used.

Affected Code:

function receiveMessage(

bytes32 _nonce,

bytes3 _source_chain,

bytes32 _source,

address _destination,

bytes32[] calldata _contents,

bytes memory _sigs

) external {

require(_sigs.length == signatureThreshold * 65, "!len");

//..hash generation

address lastSigner = address(0);

for (uint256 i = 0; i < signatureThreshold; i++) {

uint8 v;

bytes32 r;

bytes32 s;

assembly {

let ib := add(mul(65, i), 32)

v := byte(0, mload(add(_sigs, ib)))

r := mload(add(_sigs, add(1, ib)))

s := mload(add(_sigs, add(33, ib)))

}

address signer = ecrecover(messageHash, v, r, s);

require(isSigner[signer], "!signer");

require(signer > lastSigner, "!order");

lastSigner = signer;

}

bytes32 key = keccak256(abi.encodePacked(_source_chain, _nonce));

require(!usedNonces[key], "!nonce");

usedNonces[key] = true;

//..other code

}

Exploitation of these vulnerabilities can result in:

Signature Malleability: The s value of the ECDSA signature is not

checked to ensure it is in the lower half of the elliptic curve order,

leading to potential replay attacks or acceptance of invalid signatures.

11

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/d53cc7e0-2360-4fad-9d77-d782565ba7a5

Inefficient Nonce Checking: The nonce check is performed after

signature verification, which can lead to unnecessary computations if

the nonce has already been used.

Lack of EIP�712 Usage: The function does not utilize EIP�712 for

structured data hashing and signing, which is a more secure and

standardized method for signing messages on Ethereum.

Assets:
Portal.sol

Status: Fixed

Classification

Impact: 5/5

Likelihood: 3/5

Exploitability: Semi-Dependent

Complexity: Medium

Severity: Medium

Recommendations

Remediation:
Add Early Nonce Check:

Perform the nonce check before any signature verification to

prevent unnecessary computations.

bytes32 key = keccak256(abi.encodePacked(_source_chain, _nonce));

require(!usedNonces[key], "!nonce");

usedNonces[key] = true;

Implement Signature Malleability Check:

Add a check to ensure the s value is in the lower half of the curve

to mitigate signature malleability attacks. Use OpenZeppelin’s

ECDSA.sol for handling ECDSA signature operations.

Adopt EIP�712 Standard:

Utilize EIP�712 for structured data hashing and signing to enhance

security and standardize message signatures. By adopting EIP�

712, the contract ensures that signatures are unique to the

specific chain and contract, preventing replay attacks across

different chains.

Resolution: �Revised commit: 1af33e4�� The issue with the receiveMessage function

was fixed by implementing the following changes:

12

Early Nonce Check: The nonce is now checked before any signature

verification, preventing unnecessary computations if the nonce has

already been used.

Signature Malleability Check: The function now uses OpenZeppelin's

ECDSA.recover, which ensures that the s value is in the lower half of

the elliptic curve order, mitigating signature malleability attacks.

EIP�712 Adoption: The function now utilizes EIP�712 for structured data

hashing and signing, enhancing security and standardizing message

signatures.

13

F-2024-2988 - Potential Fee Bypass in bridgeToChia and

bridgeEtherToChia Functions - Medium

Description: The bridgeToChia function allows users to bridge ERC�20 tokens to the

Chia network by specifying the amount of mojos to receive on the Chia

network. The transferTip is calculated in the _handleBridging

function as:

uint256 transferTip = (_amount * tip) / 10000;

If _amount * tip is less than 10000, transferTip will be zero, allowing

users to bridge tokens without paying transfer tip. This can be more

problematic for tokens with high decimals.

Example from bridgeToChia function:

function bridgeToChia(

address _assetContract,

bytes32 _receiver,

uint256 _mojoAmount // on Chia

) external payable {

require(msg.value == IPortal(portal).messageToll(), "!toll");

_handleBridging(

_assetContract,

true,

_receiver,

_mojoAmount,

msg.value,

10 ** (ERC20Decimals(_assetContract).decimals() - 3)

);

}

In the bridgeEtherToChia function, the transfer tip can also be zero. For

WETH having 18 decimals, the wethToMojosFactor is 10 ** 15. If

amountAfterToll is 0.333 ETH, the calculated mojos amount is 333,

resulting in a zero tip for a standard tip rate of 30 basis points.

Affected Code:

function bridgeEtherToChia(bytes32 _receiver) external payable {

uint256 messageToll = IPortal(portal).messageToll();

uint256 amountAfterToll = msg.value - messageToll;

require(

amountAfterToll >= wethToEthRatio &&

amountAfterToll % wethToEthRatio == 0,

"!amnt"

);

IWETH(iweth).deposit{value: amountAfterToll}();

uint256 wethToMojosFactor = 10 ** (ERC20Decimals(iweth).decimals() -

3);

_handleBridging(

iweth,

false,

_receiver,

amountAfterToll / wethToEthRatio / wethToMojosFactor,

messageToll,

wethToMojosFactor

14

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/ac8243bf-7e23-4859-8668-1e6462233a90

);

}

Assets:
ERC20Bridge.sol

Status: Mitigated

Classification

Impact: 3/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: To address the issue of zero transfer tips for small amounts, calculate the

transferTip based on the actual ERC�20 or WETH amount instead of

mojos. This ensures that the tip is appropriately scaled and prevents the

fee from being bypassed.

Resolution: �Revised commit: e1d41c4�� The updated implementation enforces a

minimum tip of 1 mojo for bridging to the Chia network, ensuring that even

for small amounts, a minimum fee is applied. This approach prevents

transactions with zero fees and addresses the issue while maintaining the

integrity of the fee structure. As a result, the fee can vary for low mojo

amounts, which is considered acceptable by the client.

Evidences

Fee Bypass in bridgeEtherToChia Function

Reproduce:
PoC Steps:

Setup the Environment:

Deploy the Portal and ERC20Bridge contracts.

Initialize the Portal contract with appropriate parameters.

Deploy the Contracts:

Deploy the Portal contract and call the initialize function.

Deploy the ERC20Bridge contract and initialize puzzle hashes

using initializePuzzleHashes.

15

Prepare for Testing:

Deploy WETH/MilliETH contracts.

Ensure the Portal contract's messageToll is set.

Execute the Test:

Bridge a small amount of ETH (e.g., 0.333 ETH� using

bridgeEtherToChia.

Check the balance of the portal contract before and after the

transaction to verify the tip deduction.

Confirm that the tip received is zero.

Verify the Results:

Ensure the transaction emits the MessageSent event.

Verify that the tip received by the portal contract is zero for small

WETH amounts.

PoC Code:

describe("bridgeEtherToChia", function () {

it("Should correctly bridge ETH and deduct tips", async function ()

{

const receiverOnChia = ethers.encodeBytes32String("receiverOnChia");

// WETH amount below which the transfer tip is zero for 18 decimals

const ethToSend = ethers.parseEther("0.333");

let balanceBefore = await weth.balanceOf(portal.target);

// Perform the bridge operation

const tx = erc20Bridge.connect(user).bridgeEtherToChia(receiverOnChi

a, { value: ethToSend + messageToll });

// Expect the message to be sent

await expect(tx).to.emit(portal, "MessageSent");

let balanceAfter = await weth.balanceOf(portal.target);

let tipReceived = balanceAfter - balanceBefore;

console.log(`tipReceived for ${wethToken.name} with decimals ${wethT

oken.decimals}: `, tipReceived);

// Assert that the tip received

See more

Results:
ERC20Bridge test cases

ERC20Bridge (WETH=MilliETH;)

bridgeEtherToChia

tipReceived for MilliETH with decimals 3: 999n

✔ Should correctly bridge ETH and deduct tips

ERC20Bridge (WETH=WETHMock;)

bridgeEtherToChia

tipReceived for WETHMock with decimals 18: 0n

1) Should correctly bridge ETH and deduct tips

1 passing (2s)

1 failing

1) ERC20Bridge test cases

ERC20Bridge (WETH=WETHMock;)

bridgeEtherToChia

Should correctly bridge ETH and deduct tips:

Tip should be greater than zero

+ expected - actual

16

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/ac8243bf-7e23-4859-8668-1e6462233a90

Files: ERC20BridgeNoFee.ts

17

F-2024-2948 - Front-Running Risk Due to Lack of Access Control in

initializePuzzleHashes - Low

Description: The initializePuzzleHashes functions in both ERC20Bridge.sol and

WrappedCAT.sol lack access control. This vulnerability can result in front-

running attacks, where an attacker sets incorrect puzzle hashes,

potentially necessitating contract redeployment.

The initializePuzzleHashes function initializes puzzle hashes used

for locking and unlocking tokens. This function is critical and should be

called only once during the contract's deployment transaction. However,

the current implementation does not restrict access to this function,

allowing anyone to call it and set the puzzle hashes.

Affected Code:

function initializePuzzleHashes(

bytes32 _burnPuzzleHash,

bytes32 _mintPuzzleHash

) external {

require(

burnPuzzleHash == bytes32(0) && mintPuzzleHash == bytes32(0),

"nope"

);

. . .

}

Without access control, these functions can be front-run by attackers. This

would result in setting incorrect puzzle hashes, rendering the contracts

ineffective and possibly requiring a complete redeployment to correct the

issue.

Assets:
WrappedCAT.sol

ERC20Bridge.sol

Status: Mitigated

Classification

Impact: 2/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

18

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/0a8cdd84-81cb-49af-b908-fd4eb16035a2

Remediation: Implement access control to restrict who can call the

initializePuzzleHashes function. Ensure only authorized addresses,

such as the contract owner or a designated admin, can execute this

function.

Resolution: �Revised commit: 1e2695e): The deployment process uses the CreateCall

contract and Safe's batch transaction capability to deploy the contract and

call initializePuzzleHashes in the same transaction. This ensures that

the functions cannot be front-run and the puzzle hashes are set correctly.

The customer is comfortable with this approach as the risks are mitigated

by adhering to the established deployment procedure.

19

F-2024-2950 - Unrestricted messageToll Updates Pose Risk of

Unexpected Fee Changes - Low

Description: The messageToll variable defines the fee required to send a message via

the portal and is set by the contract owner. The updateMessageToll

function allows the toll to be updated without any restrictions on

frequency or maximum value, posing a risk if the toll is changed

unexpectedly or to an unreasonable amount.

uint256 public messageToll;

function updateMessageToll(uint256 _newValue) external onlyOwner {

require(messageToll != _newValue, "!diff");

messageToll = _newValue;

emit MessageTollUpdated(_newValue);

}

In ERC20Bridge.sol, the bridgeEtherToChia function calculates

amountAfterToll by subtracting messageToll from msg.value. If the

toll changes unexpectedly, users may receive less than expected, leading

to potential loss of funds.

function bridgeEtherToChia(bytes32 _receiver) external payable {

uint256 messageToll = IPortal(portal).messageToll();

uint256 amountAfterToll = msg.value - messageToll;

require(

amountAfterToll >= wethToEthRatio &&

amountAfterToll % wethToEthRatio == 0,

"!amnt"

);

IWETH(iweth).deposit{value: amountAfterToll}();

. . .

}

While the bridgeToChia and bridgeToChiaWithPermit functions

handle changes to messageToll safely by checking if msg.value

matches messageToll, the bridgeEtherToChia function does not.

This vulnerability can lead to the following issues:

Loss of Funds: Users may receive less than expected if the

messageToll is changed after they send their transaction.

Unexpected Behavior: Sudden changes to messageToll can lead to

failed transactions and a poor user experience.

Assets:
Portal.sol

ERC20Bridge.sol

Status: Fixed

Classification

20

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/f3001f6e-5b11-4d3c-8126-dfea890b9721

Impact: 3/5

Likelihood: 2/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Modify the bridgeEtherToChia function to include an additional

parameter _expectedMessageToll. This parameter will be used to

compare with the actual messageToll, ensuring users are protected from

rapid changes and always know the exact toll they will pay:

function bridgeEtherToChia(bytes32 _receiver, uint256 _expectedMessa

geToll) external payable {

uint256 messageToll = IPortal(portal).messageToll();

require(messageToll == _expectedMessageToll, "Unexpected message tol

l");

uint256 amountAfterToll = msg.value - messageToll;

require(

amountAfterToll >= wethToEthRatio &&

amountAfterToll % wethToEthRatio == 0,

"!amnt"

);

. . .

}

Resolution: �Revised commit: dd7dcae): The issue with the bridgeEtherToChia

function was fixed. The new implementation includes a _maxMessageToll

parameter that ensures the messageToll does not exceed the expected

amount. This protects users from unexpected changes in the

messageToll, ensuring accurate and predictable transaction costs.

21

F-2024-2987 - Incompatibility with Fee-On-Transfer and Rebasing

Tokens in ERC20Bridge.sol - Low

Description: The contract assumes that transferring a certain number of tokens results

in the exact same number of tokens being received. This assumption fails

with fee-on-transfer tokens, which deduct a fee during each transfer, and

rebasing tokens, which automatically adjust the token balance.

Additionally, tokens without decimals may also cause issues.

Example function from ERC20Bridge.sol:

function bridgeToChia(

address _assetContract,

bytes32 _receiver,

uint256 _mojoAmount // on Chia

) external payable {

require(msg.value == IPortal(portal).messageToll(), "!toll");

_handleBridging(

_assetContract,

true,

_receiver,

_mojoAmount,

msg.value,

10 ** (ERC20Decimals(_assetContract).decimals() - 3)

);

}

The incompatibility can lead to:

Reverted Transactions: If the token's behavior does not match the

contract's assumptions, transactions may revert.

Stuck Tokens: For rebasing tokens, the balance may change

unexpectedly, leading to tokens being stuck in the contract.

Imbalances: Fee-on-transfer tokens can cause an imbalance between

the amount of tokens locked on the Chia chain and those available on

the EVM chain, resulting in inaccurate bridging.

Assets:
ERC20Bridge.sol

Status: Accepted

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Low

22

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/c9d48d07-1980-49de-a440-d3cccc6dbceb

Recommendations

Remediation: Implement an allowlist of supported tokens to avoid the issues with

unsupported tokens. New tokens can be added to the allowlist after

validating that they meet the bridging requirements.

Resolution: �Revised commit: dd7dcae): The issue regarding the incompatibility with

fee-on-transfer and rebasing tokens has been acknowledged and

accepted by the client. The ERC20Bridge contract is designed to be

immutable, with no owner or whitelist functionality. The client has decided

to limit the tokens available on their frontend to non-fee-on-transfer and

non-rebasing tokens. Users who bridge unsupported tokens do so at their

own risk, typically by bypassing the frontend. Should support for such

tokens be required in the future, a separate contract will be deployed to

handle those specific cases. Therefore, no changes will be made to the

current implementation.

23

F-2024-2996 - Potential Failures in Ether Transfer Using transfer

Function - Low

Description: The transfer function in ERC20Bridge.sol and Portal.sol may fail under

certain conditions, particularly when the receiver address is a smart

contract with specific Gas requirements. This can lead to failed

transactions and unexpected outcomes when transferring Ether.

In ERC20Bridge.sol, the receiveMessage function uses transfer to

send Ether to the receiver:

if (assetContract != iweth) {

SafeERC20.safeTransfer(

IERC20(assetContract),

receiver,

amount - transferTip

);

SafeERC20.safeTransfer(IERC20(assetContract), portal, transferTip);

} else {

IWETH(iweth).withdraw(amount);

payable(receiver).transfer((amount - transferTip) * wethToEthRatio);

payable(portal).transfer(transferTip * wethToEthRatio);

}

In Portal.sol, the rescueEther function also uses transfer to send Ether

to a list of addresses:

function rescueEther(

address[] calldata _receivers,

uint256[] calldata _amounts

) external onlyOwner {

for (uint256 i = 0; i < _receivers.length; i++) {

payable(_receivers[i]).transfer(_amounts[i]);

}

}

The use of transfer may fail in the following scenarios:

The receiver address is a smart contract without a payable function.

The receiver address is a smart contract with a payable fallback

function that uses more than 2300 Gas units.

The receiver address is a smart contract with a payable fallback

function that is called through a proxy, raising the call's Gas usage

above 2300 units.

Some multi-signature wallets may require a higher Gas limit than 2300.

The impact of using transfer includes:

Failed Transactions: Ether transfers to contracts with specific Gas

requirements may fail, causing the transaction to revert.

Inconsistent Behavior: Transactions may work in some cases but fail in

others depending on the Gas usage of the receiver's fallback

function.

Usability Issues: Users may face difficulties when using the protocol if

their wallets or contracts cannot accept Ether via transfer.

24

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/a40f3b22-6daa-45a5-90fd-5a947adc4a97

Assets:
Portal.sol

ERC20Bridge.sol

Status: Fixed

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: To ensure robust Ether transfers, it is recommended to use one of the

following methods:

Use .call{value: amount}:

(bool success,) = receiver.call{value: amount}("");

require(success, "Transfer failed");

Use OpenZeppelin's Address.sendValue:

import "@openzeppelin/contracts/utils/Address.sol";

Address.sendValue(payable(receiver), amount);

Care must be taken to avoid reentrancy vulnerabilities. Consider using

ReentrancyGuard or the Checks-Effects-Interactions pattern to mitigate

such risks.

Resolution: �Revised commit: 129a017�� The issue of potential failures in Ether

transfers due to gas limitations was fixed. The implementation now uses

OpenZeppelin's Address sendValue method to handle Ether transfers.

This approach ensures compatibility with smart contracts that require

more than 2300 Gas units and prevents transaction failures.

25

F-2024-3062 - Lack of Minimum Amount Leads to Zero Transfer - Low

Description: Several functions in WrappedCAT.sol and ERC20Bridge.sol lack minimum

amount checks. This can result in transactions with zero amounts, causing

inefficiencies, potential errors.

Affected Functions:

WrappedCAT.sol:

receiveMessage

bridgeBack

ERC20Bridge.sol:

receiveMessage

bridgeToChia

bridgeToChiaWithPermit

bridgeEtherToChia

Example of Issue in bridgeEtherToChia Function:

function bridgeEtherToChia(

bytes32 _receiver,

uint256 _maxMessageToll

) external payable {

uint256 messageToll = IPortal(portal).messageToll();

require(messageToll <= _maxMessageToll, "!toll");

uint256 amountAfterToll = msg.value - messageToll;

require(

amountAfterToll >= wethToEthRatio &&

amountAfterToll % wethToEthRatio == 0,

"!amnt"

);

IWETH(iweth).deposit{value: amountAfterToll}();

uint256 wethToMojosFactor = 10 ** (ERC20Decimals(iweth).decimals() -

3);

_handleBridging(

iweth,

false,

_receiver,

amountAfterToll / wethToEthRatio / wethToMojosFactor,

messageToll,

wethToMojosFactor

);

}

For WETH with 18 decimals:

The wethToEthRatio is 1.

The wethToMojosFactor is 10**15.

Any positive amountAfterToll divided by wethToEthRatio that is less

than wethToMojosFactor will produce 0 mojos.

This can lead to:

Zero Transfers: Transactions with zero amounts are inefficient and

unnecessary, leading to gas wastage.

26

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/944c007c-4b23-40ba-9313-9a72f7d2e890

Unexpected Behavior: Functions that process zero amounts can cause

unexpected behavior and potential issues within the contract logic.

Potential Exploits: Attackers can spam the bridge with zero-value

transactions if the message toll and transaction gas price are

affordable, causing redundant zero transfers

Funds loss: potential loss of small ETH amounts that produce 0 mojos.

Assets:
WrappedCAT.sol

ERC20Bridge.sol

Status: Fixed

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Ensure that all relevant functions check for a minimum amount greater

than zero before proceeding with the transfer or mint operations.

Resolution: �Revised commit: 7001f34�� The issue of several functions in

WrappedCAT.sol and ERC20Bridge.sol lacking minimum amount checks

was fixed. The updated code now includes validation to ensure that the

transfer amount and calculated transfer tip are greater than zero before

proceeding. This prevents inefficient zero transfers, potential errors, and

ensures that transactions are processed correctly.

27

Observation Details

F-2024-2844 - Missing checks for address(0) - Info

Description: Several constructors and initializer functions within the Warp Green

protocol lack checks for zero addresses.

In ERC20Bridge.sol, the constructor does not validate the _portal or

_iweth addresses:

constructor(

uint16 _tip,

address _portal,

address _iweth,

uint64 _wethToEthRatio,

bytes3 _otherChain

) {

tip = _tip;

portal = _portal;

iweth = _iweth;

wethToEthRatio = _wethToEthRatio;

otherChain = _otherChain;

}

In Portal.sol, the initialize and updateSigner functions does not

validate addresses of the _signers :

function updateSigner(address _signer, bool _newValue) external only

Owner {

require(isSigner[_signer] != _newValue, "!diff");

isSigner[_signer] = _newValue;

emit SignerUpdated(_signer, _newValue);

}

In WrappedCAT.sol, the constructor does not validate the _portal

address:

constructor(

string memory _name,

string memory _symbol,

address _portal,

uint16 _tip,

uint64 _mojoToTokenRatio,

bytes3 _otherChain

) ERC20(_name, _symbol) ERC20Permit(_name) {

portal = _portal;

tip = _tip;

mojoToTokenRatio = _mojoToTokenRatio;

otherChain = _otherChain;

}

Absence of checks for zero addresses can lead to the following issues:

Contract functionalities may fail if the zero address is used in place of

valid addresses.

The zero address can cause unexpected behavior, disrupting protocol

operations.

28

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/9438754e-aaec-4836-87e2-d016ece95c24

Assets:
WrappedCAT.sol

Portal.sol

ERC20Bridge.sol

Status: Fixed

Recommendations

Remediation: Include checks to ensure that addresses provided as constructor or

initializer parameters are not the zero address.

Resolution: �Revised commit: dfab1f1�� The issue of missing zero address checks in the

constructors and initializer functions was fixed. The updated

implementation now includes validation to ensure that zero addresses are

not used. This prevents potential disruptions and ensures proper

functionality of the protocol.

29

F-2024-2845 - The public functions not called by the contract

should be declared `external` instead - Info

Description: In Solidity, function visibility is an important aspect that determines how

and where a function can be called from. Two commonly used visibilities

are public and external. A public function can be called both from

other functions inside the same contract and from outside transactions,

while an external function can only be called from outside the contract.

A potential pitfall in smart contract development is the misuse of the

public keyword for functions that are only meant to be accessed

externally. When a function is not used internally within a contract and is

only intended for external calls, it should be labeled as external rather

than public.

Affected Code:

83: function initializePuzzleHashes(

103: function receiveMessage(

129: function bridgeBack(bytes32 _receiver, uint256 _mojoAmount) pub

lic payable {

Assets:
WrappedCAT.sol

Status: Fixed

Recommendations

Remediation: Declare functions that are not called internally within the contract and are

intended for external access as external rather than public.

Resolution: �Revised commit: 03a1c08�� The issue of using the public visibility for

functions intended to be accessed only externally was fixed by changing

the visibility of the affected functions to external.

30

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/24d175f7-4ddd-4c35-8cf9-8da1cfdf1366

F-2024-2847 - Lack of Upper Bound on tip Parameter in

WrappedCAT.sol and ERC20Bridge.sol - Info

Description: The constructors in WrappedCAT.sol and ERC20Bridge.sol do not impose a

limit on the tip parameter, which represents the tip percentage paid to

the portal. This omission can result in miscalculation of transferTip,

potentially causing incorrect fund distribution.

The tip parameter in both WrappedCAT.sol and ERC20Bridge.sol is set

during contract deployment and represents the percentage, in basis

points, of the amount to be sent as a tip to the portal. The tip is used in

the receiveMessage function to calculate the transferTip. However,

no upper limit is enforced on this parameter.

Example from ERC20Bridge.sol constructor:

constructor(

uint16 _tip,

address _portal,

address _iweth,

uint64 _wethToEthRatio,

bytes3 _otherChain

) {

tip = _tip;

portal = _portal;

iweth = _iweth;

wethToEthRatio = _wethToEthRatio;

otherChain = _otherChain;

}

The receiveMessage function calculates transferTip as follows:

uint256 transferTip = (amount * tip) / 10000;

Without a limit, if the tip is set too high, the calculation of transferTip

will yield unreasonable values, potentially exceeding the total amount

being transferred.

Assets:
WrappedCAT.sol

ERC20Bridge.sol

Status: Fixed

Recommendations

Remediation: Implement a check to ensure that the tip parameter does not exceed a

reasonable maximum value.

Resolution: �Revised commit: acb1f42�� The issue of no limit on the tip parameter in

WrappedCAT.sol and ERC20Bridge.sol was fixed by implementing a check

31

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/d2a8ba40-8851-4d4f-b6ea-f432f88d4c17

to ensure that the tip parameter is within a reasonable range. The new

check enforces that the tip must be greater than 0 and not exceed 1000

basis points �10%�.

32

F-2024-2852 - Missing Validation for Supported Chains - Info

Description: The sendMessage and receiveMessage functions in the Portal.sol

contract lack checks for supported blockchain chain IDs. This omission

allows messages to be sent and received from unsupported chains,

potentially leading to unexpected behavior.

The sendMessage function is responsible for sending cross-chain

messages, while the receiveMessage function handles incoming

messages from other blockchains. Both functions accept chain IDs as

parameters but do not verify if these chain IDs are supported by the

protocol.

Example from sendMessage function:

function sendMessage(

bytes3 _destination_chain,

bytes32 _destination,

bytes32[] calldata _contents

) external payable {

require(msg.value == messageToll, "!toll");

ethNonce += 1;

(bool success,) = block.coinbase.call{value: msg.value}(new bytes(0

));

require(success, "!toll");

emit MessageSent(

bytes32(ethNonce),

msg.sender,

_destination_chain,

_destination,

_contents

);

}

The lack of validation for _destination_chain in sendMessage and

_source_chain in receiveMessage allows interactions with

unsupported chains. This can result in misrouted messages, unauthorized

interactions or increased difficulty in debugging and tracing.

Assets:
Portal.sol

Status: Fixed

Recommendations

Remediation: Implement validation checks to ensure that only supported chain IDs are

accepted in the sendMessage and receiveMessage functions. Maintain a

list of supported chains and verify against this list.

Resolution: �Revised commit: eb94851�� The issue with the sendMessage and

receiveMessage functions lacking checks for supported blockchain chain

IDs was fixed. The new implementation includes a supportedChains

33

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/2cefa21e-d14c-4e22-95a6-bbbc27c913a8

mapping and validation logic to ensure that only messages to and from

supported chains are processed. This prevents interactions with

unsupported chains and ensures reliable cross-chain communication.

34

F-2024-2947 - Floating Pragma - Info

Description: A "floating pragma" in Solidity refers to the practice of using a pragma

statement that does not specify a fixed compiler version but instead

allows the contract to be compiled with any compatible compiler version.

This issue arises when pragma statements like pragma solidity

^0.8.20; are used without a specific version number, allowing the

contract to be compiled with the latest available compiler version. This can

lead to various compatibility and stability issues.

Assets:
WrappedCAT.sol

Portal.sol

ERC20Bridge.sol

MilliETH.sol

IWETH.sol

IPortalMessageReceiver.sol

IPortal.sol

Status: Fixed

Recommendations

Remediation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs for the

compiler version that is chosen.

Resolution: �Revised commit: 1e2695e): The issue of using a "floating pragma" was

fixed by locking the pragma version to 0.8.23.

35

https://portal.hacken.io/App/Projects/Details/30157ea8-828b-4849-a0ab-d55435981997/Finding/f31e660e-abe9-4401-b502-4c8a5628a124
https://github.com/ethereum/solidity/releases

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility and

safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

36

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

37

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/warpdotgreen/cli/tree/master/contracts

Commit dddc8a5f4876ce27ad5078616da074a2472bad24

Whitepaper

Requirements https://docs.warp.green; NatSpec

Technical Requirements https://docs.warp.green; README.md

Contracts in Scope

./contracts/WrappedCAT.sol

./contracts/Portal.sol

./contracts/ERC20Bridge.sol

./contracts/MilliETH.sol

./contracts/interfaces/IWETH.sol

./contracts/interfaces/IPortalMessageReceiver.sol

./contracts/interfaces/IPortal.sol

38

https://github.com/warpdotgreen/cli/tree/master/contracts
https://docs.warp.green/
https://docs.warp.green/

