
Smart Contract Code

Review And Security

Analysis Report

Customer: BlastUp

Date: 10/05/2024



We express our gratitude to the BlastUp team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

BlastUP is a launchpad and staking platform within the Blast blockchain ecosystem. 

Platform: Blast(EVM)

Language: Solidity

Tags: Blast, Staking

Timeline: 06/05/2024 � 07/05/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/blastupio/launchpad-contracts

Commit cb6957d

2

https://hackenio.cc/sc_methodology
https://github.com/blastupio/launchpad-contracts


Audit Summary

10/10 10/10 100% 10/10
Security score Code quality score Test coverage Documentation quality score

Total 10/10 
The system users should acknowledge all the risks summed up in the risks section of the report

1 1 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 1

Medium 0

Low 0

Vulnerability Status

F�2024�2196 � Insufficient Reward Leads To Denial Of Service Fixed

3

https://portal.hacken.io/App/Projects/Details/df734474-2cd1-4cfb-be88-e2c233e08f41/Finding/ffd5c6b4-4de1-42e7-914b-205bd2e951fc


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for BlastUp

Audited By Eren Gonen

Approved By Ataberk Yavuzer

Website https://blastup.io/

Changelog 08/05/2024 � Preliminary Report

 10/05/2024 � Final Report

4

https://blastup.io/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 13

Disclaimers 16

Appendix 1. Severity Definitions 17

Appendix 2. Scope 18



System Overview

BlastUP is a staking protocol with the following contracts:

BLPStaking  — a contract that rewards users for staking their tokens.  Users can earn token based on

the percentage which is set by admin

Privileged roles

 The owner of the BLPStaking contract can set the minimum staking amount, lock time, and

percentage.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

Code quality

The total Code quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 100% (branch coverage)

Security score

Upon auditing, the code was found to contain 0 critical, 1 high, 0 medium, and 0 low severity issues.

Out of these, 1 issues have been addressed and resolved, leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score 10 out of 10. This

score reflects the combined evaluation of documentation, code quality, test coverage, and security

aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

If there are not enough rewards in the contract, users may not be able to claim their rewards or

may be forced to use emergency withdrawal without claiming their rewards.

8



Findings

Vulnerability Details

F-2024-2196 - Insu�cient Reward Leads To Denial Of Service - High

Description: The BLPStaking contract facilitates staking operations where users stake

tokens and earn rewards over time based on the staking parameters set

by the administrator. A critical oversight in the contract design is the lack

of separation between the tokens used for staking and those designated

for rewards. Since both operations utilize the same token address without

distinct accounting for the reward pool, users can potentially stake tokens

even when there are insufficient funds in the contract to cover future

rewards. This scenario can lead to a temporary Denial of Service �DOS� in

the claim() and withdraw() functions, as users may not be able to

withdraw or claim rewards unless additional funds are deposited into the

contract by the administrator.

In the contract, both staking deposits and reward payouts utilize the

stakeToken. If the contract allows withdrawals or claims despite

insufficient dedicated reward funding, users may inadvertently receive

tokens from the staking pool itself—i.e., other users' deposits. This can

deplete the staking pool, potentially leading to a shortfall when other

users attempt to claim rewards or withdraw their stakes. Due to the lack

of a dedicated reward reserve, if the contract's balance falls below the

sum required to cover all potential reward claims, users might be unable to

withdraw their stakes or claim rewards, leading to a temporary Denial of

Service �DOS�.

Assets:
BLPStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Medium

Likelihood �1�5�� 4

Impact �1�5�� 4

9

https://portal.hacken.io/App/Projects/Details/df734474-2cd1-4cfb-be88-e2c233e08f41/Finding/ffd5c6b4-4de1-42e7-914b-205bd2e951fc


Exploitability �0�2�� 0

Complexity �0�2�� 1

Final Score: 3.8 �High)

Hacken Calculator Version: 0.6

Severity: High

Recommendations

Remediation: To enhance the functionality and security of the system, we advise

implementing the following measures:

Separate Reward Reserve:

Implement a dedicated reward reserve to ensure that rewards are

disbursed from a separate pool of funds, not from the staked tokens.

This can be achieved by maintaining a distinct reward reserve

balance in the contract.

Funding Checks:

Introduce stringent checks to prevent new stakes unless there are

sufficient funds to cover both current and future rewards.

Emergency Withdrawal Logic(Optional):

Consider implementing emergency withdrawal logic as an additional

layer of security. This logic would prioritize user withdrawals over

reward payouts in cases where funds are limited. While optional, this

feature can provide added assurance to users during unforeseen

circumstances.

Resolution: The BlastUP team fixed the issue in commit 7b1cddc by integrating a

force withdrawal mechanism and an ensureSolvency() modifier into the

claim() and withdrawFunds() functions. This modifier guarantees that

the contract's balance exceeds the total amount owed to users, not

including rewards.

Evidences

POS

Reproduce:
The Proof of Concept �POC� scenario described in the Solidity testing

contract StakingEren can be broken down into five key steps to illustrate

the issues and potential risks with the BLPStaking contract as follows:

10



Step 1� Setting Up and Staking Tokens

The test simulates a user who is staking a certain amount of tokens

(1e18 wei, or 1 token in this case) for a lock period of 1 month

(2592000 seconds).

The user is first minted tokens to have enough balance to stake.

The admin sets the reward percentage for this lock period to 100%

per annum.

The user approves the staking contract to spend their tokens and

then stakes them, expecting an emission of the Staked event.

Step 2� First Claim After One Day

The blockchain time is moved forward by 1 day (86400 seconds).

Before the user claims their rewards, their token balance is checked.

The test checks if the reward calculated for one day is as expected

(27397260273972 wei, or approximately 0.027397 tokens). This is

derived from the 100% annual reward rate, pro-rated for one day.

The user then claims their reward, and the test verifies that the user's

token balance has increased exactly by the amount of the daily

reward.

Step 3� Time Warp to End of Lock Period

The blockchain time is fast-forwarded to the end of the lock period �1

month).

Step 4� Attempted Withdrawal

The user attempts to withdraw their staked tokens and the earned

rewards.

The scenario is set up to expect a revert, indicating that the

withdrawal is not successful. This part of the test is designed to

demonstrate a possible failure point in the contract, likely due to

insufficient tokens available in the contract to cover both the principal

and the accrued rewards, as previously discussed.

This scenario effectively demonstrates the critical design flaw where

insufficient funds due to overlapping staking and reward distributions can

lead to failures in user withdrawals, reinforcing the need for separate

management of staked funds and rewards.

Results:

Files: DosPoc.t.sol

11



Observation Details

F-2024-2200 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x0000000000000000000000000000000000000000 is known as the

"zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. 

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

Missing checks were observed in the following functions of the

BLPStaking contract:

./BLPStaking.sol: constructor()

Assets:
BLPStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Recommendations

Remediation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Resolution: This finding was acknowledged by the BlastUP team.

12

https://portal.hacken.io/App/Projects/Details/df734474-2cd1-4cfb-be88-e2c233e08f41/Finding/bb779d8c-59ea-4543-9826-bbfd49d7af17


F-2024-2201 - Missing Events - Info

Description: Events for critical state changes should be emitted for tracking actions

off-chain.  

It was observed that events are missing in the following functions:

setMinBalance()

setLockTimeToPercent()

Events are crucial for tracking changes on the blockchain, especially for

actions that alter significant contract states or permissions. The absence

of events in these functions means that external entities, such as user

interfaces or off-chain monitoring systems, cannot effectively track these

important changes.

Assets:
BLPStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Recommendations

Remediation: Consider implementing and emitting events for the necessary functions.

Resolution: This finding was acknowledged by the BlastUP team.

13

https://portal.hacken.io/App/Projects/Details/df734474-2cd1-4cfb-be88-e2c233e08f41/Finding/9e1000d2-9b8b-49ec-8185-9506a04ce4ec


F-2024-2202 - Use `Ownable2Step` rather than `Ownable - Info

Description: Ownable2Step and Ownable2StepUpgradeable prevent the contract

ownership from mistakenly being transferred to an address that cannot

handle it (e.g. due to a typo in the address), by requiring that the recipient

of the owner permissions actively accept via a contract call of its own.

contract BLPStaking is Ownable {...}

Assets:
BLPStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Recommendations

Remediation: Consider using Ownable2Step or Ownable2StepUpgradeable from

OpenZeppelin Contracts to enhance the security of your contract

ownership management. These contracts prevent the accidental transfer

of ownership to an address that cannot handle it, such as due to a typo,

by requiring the recipient of owner permissions to actively accept

ownership via a contract call. This two-step ownership transfer process

adds an additional layer of security to your contract's ownership

management.

Resolution: This finding was acknowledged by the BlastUP team.

14

https://portal.hacken.io/App/Projects/Details/df734474-2cd1-4cfb-be88-e2c233e08f41/Finding/d10d520a-f3c2-4245-b5dd-b4248a691110
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3d7a93876a2e5e1d7fe29b5a0e96e222afdc4cfa/contracts/access/Ownable2Step.sol#L31-L56
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/25aabd286e002a1526c345c8db259d57bdf0ad28/contracts/access/Ownable2StepUpgradeable.sol#L47-L63


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

15



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

16

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/blastupio/launchpad-contracts

Commit cb6957dde5944e6cfd885ceed8539140dce51a98

Whitepaper N/A

Requirements https://docs.blastup.io/blastup-docs

Technical Requirements Confidential

Contracts in Scope

./contracts/BLPStaking.sol

17

https://github.com/blastupio/launchpad-contracts
https://docs.blastup.io/blastup-docs



