
Smart Contract Code Review

And Security Analysis Report

Customer: Cadaico GmbH

Date: 15/05/2024

We express our gratitude to the Cadaico GmbH team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

CADAICO's technology stack blends Artificial Intelligence and Blockchain, anchored by the versatile AI Model

customizable for specific needs. The integrated blockchain guarantees secure transactions.

Platform: EVM

Language: Solidity

Tags: ERC20

Timeline: 02/05/2024 � 03/05/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/CADAICO/contracts

Commit 83cb55e

2

https://hackenio.cc/sc_methodology
https://github.com/CADAICO/contracts

Audit Summary

10/10 7/10 100% 8/10
Security score Code quality score Test coverage Documentation quality score

Total 9.2/10
The system users should acknowledge all the risks summed up in the risks section of the report

4 4 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 1

Low 3

Vulnerability Status

F�2024�1966 � Two step ownership transfer mechanism can be used instead of regular Ownable Fixed

F�2024�1967 � The owner of the contract can renounce the ownership, without the possibility of recovery Fixed

F�2024�1972 � Difference in naming between ERC20Permit and ERC20 Fixed

F�2024�2026 � Minted amount of tokens can be higher than MAX_TOTAL_SUPPLY Fixed

3

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/cbf047fb-fbb1-4cac-b7f9-9ef04f716155
https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/1ccb9778-b2b6-48f0-8807-a76b335e21c1
https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/7759b346-638c-448d-9a94-790670b0c1e0
https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/da4cd43c-ad7f-45a9-a201-fa990ae97e5b

This report may contain confidential information about IT systems and the intellectual property of the Customer,

as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this

report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Cadaico GmbH

Audited By Bohdan Pukhno, Philipp Eder

Approved By Yves Toiser

Website https://www.cadai.co/

Changelog 06/05/2024 � Preliminary Report & 15/05/2024 � Final Report

4

https://www.cadai.co/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 17

Disclaimers 26

Appendix 1. Severity Definitions 27

Appendix 2. Scope 28

System Overview

CADAICO � simple ERC�20 token that mints 1 million tokens of initial supply to a deployer. Additional minting is

allowed only by the owner. Burning is allowed. The token has permit functionality.

It has the following attributes:

Name: CADAICO

Symbol: wCADAI

Decimals: 18

Total supply: 100 Million tokens.

Privileged roles

The owner of the contract can mint tokens to any address. The amount of mintable tokens is limited to 100

million

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed scoring

criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation quality score is 8 out of 10.

Functional requirements are provided.

Technical description is not provided.

Detailed NatSpecs are provided.

Code quality

The total Code quality score is 7 out of 10.

The code follows Solidity Style Guide.

The development environment is not provided.

Test coverage

Code coverage of the project is 100% (branch coverage).

Tests are not mandatory for projects with less than 250 LOC.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 3 low severity issues. Out of

these, 4 issues have been addressed and resolved, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.2. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

Centralization risk: 10 Million tokens will be minted upon deployment and the sole privilege to mint the

remaining tokens up to the maximum supply lies with the owner.

8

Findings

Vulnerability Details

F-2024-1972 - Di�erence in naming between ERC20Permit and ERC20 -

Medium

Description: In the CADAICO contract, the name that is inserted into the ERC20 token

constructor is "CADAICO", but the name that is inserted into the ERC20Permit

constructor is "Cadaico".

ERC20Permit passes the value of this name to EIP712 for message signatures,

where the hashed name will be used to build a domain separator, and then will be

used in the function _hashTypedDataV4 to compare signatures.

Differences in the case of letters can negatively affect correct operation.

According to the ASCII table lowercase letters have a different code than

uppercase letters and when comparing the words "Cadaico" and "CADAICO",

the hashed output will not match.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Classification

Impact: 2/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 4

Impact �1�5�� 2

Exploitability �0�2�� 0

Complexity �0�2�� 0

Final Score: 3.0 �Medium)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

Remediation: Use the same name parameter that is passed to the corresponding constructor.

This will help to avoid incorrect signatures of permits shared to users.

9

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/7759b346-638c-448d-9a94-790670b0c1e0

Resolution: Remediation(revised commit: 160dfa0�� The client has fixed this issue by using

the same name parameter in both constructors' calls ERC20 and ERC20Permit.

10

F-2024-1966 - Two step ownership transfer mechanism can be used instead

of regular Ownable - Low

Description: The CADAICO contract currently uses a simple Ownable pattern, where ownership

can be transferred in a single transaction. While this is straightforward and easy to

understand, it can potentially lead to issues if the new owner's address is input

incorrectly, as ownership would be irreversibly transferred to an incorrect (and

potentially inaccessible) address.

A more secure pattern is the two-step ownership transfer, also known as

"claimable" ownership. In this pattern, the current owner initiates the transfer, but

the new owner must also call a function to claim ownership. This provides an

additional layer of security, as it ensures that the new owner's address is correct

and that the new owner is ready to take over the contract.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 2/5

Exploitability: Dependent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 4

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.1 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: To improve the security of your contract's ownership management, it is

recommended to utilize the Ownable2Step contract from OpenZeppelin. This

contract implements a two-step process for transferring ownership, requiring the

new owner to actively confirm acceptance through a contract call. This

mechanism helps prevent the unintended transfer of ownership to an incorrect

address, thereby enhancing overall security with an additional verification step.

11

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/cbf047fb-fbb1-4cac-b7f9-9ef04f716155

Resolution: Remediation(revised commit: 160dfa0�� the Ownable2Step contract from

OpenZeppelin implemented in the CADAICO contract.

12

F-2024-1967 - The owner of the contract can renounce the ownership,

without the possibility of recovery - Low

Description: The CADAICO contract currently uses the Ownable library for authorization control,

which includes the renounceOwnership() function. This function allows the

current owner to permanently renounce ownership, making the contract

ownerless.

The contract also includes a variable mint function, which is restricted to the

owner:

function mint(address to, uint256 amount) public onlyOwner

This function is critical for the operation of the contract as it allows to mint a new
tokens. If ownership is renounced, this function becomes inaccessible, effectively

making the contract unable to mint a new tokens.

Renouncing the ownership is not mentioned in the documentation as an intended

functionality.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 2/5

Exploitability: Dependent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 3

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: It is advised to override the renounceOwnership() function to reject any

transaction. This adjustment will ensure that the contract owner cannot

inadvertently or deliberately make the contract ownerless and, therefore unusable.

13

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/1ccb9778-b2b6-48f0-8807-a76b335e21c1

Resolution: Remediation(revised commit: 160dfa0�� The client has fixed this issue by

overriding the renounceOwnership() function to reject any transaction.

14

F-2024-2026 - Minted amount of tokens can be higher than

MAX_TOTAL_SUPPLY - Low

Description: The description states that MAX_TOTAL_SUPPLY of the token is 100 million

tokens. And the upper limit is calculated with the value of totalSupply()

function in the mint() function:

function mint(address to, uint256 amount) public onlyOwner {

require(totalSupply() + amount <= MAX_TOTAL_SUPPLY, "Minting would exceed ma

x total supply");

_mint(to, amount);

}

Since this contract inherits from ERC20Burnable by calling burn() or burnFrom()

functions it will decrease the value of the totalSupply() function's output

function _burn(address account, uint256 value) internal {

if (account == address(0)) {

revert ERC20InvalidSender(address(0));

}

// Here is the call to the _update() function

_update(account, address(0), value);

}

function _update(address from, address to, uint256 value) internal virtual {

// Rest of the code

...

// Check if the `to` is equal to address(0) means that it is a burn

if (to == address(0)) {

unchecked {

// _totalSupply decreasement

_totalSupply -= value;

}

// Rest of the code

...

}

If a totalSupply() value of 100 million is reached and any user decides to

burn their tokens, the totalSupply() value will be decreased and the possibility

to mint new tokens arises. The totalSupply() value will be 100 million again

while the total amount of tokens minted will be higher.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Classification

Impact: 2/5

Likelihood: 4/5

Exploitability: Semi-Dependent

Complexity: Medium

Likelihood �1�5�� 4

Impact �1�5�� 2

Exploitability �0�2�� 2

15

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/da4cd43c-ad7f-45a9-a201-fa990ae97e5b

Complexity �0�2�� 0

Final Score: 2.1 (Low)

Severity: Low

Recommendations

Remediation: The output of totalSupply() is unsuitable as a criteria within the mint()

function, instead a new variable to keep track of the amount of tokens minted can

be created and used as the criteria within the mint() function.

Resolution: Remediation(revided commit: 160dfa0�� The client has fixed this issue by adding

a new variable totalMinted that stores all the amount of tokens that minted.

16

Observation Details

F-2024-1965 - State variables could be declared as immutable - Info

Description: The variable MAX_TOTAL_SUPPLY is set in the constructor and never updated,

therefore it can be marked as immutable to enhance gas efficiency.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Recommendations

Remediation: Declare the variable MAX_TOTAL_SUPPLY as immutable to save Gas.

Resolution: Remediation(revised commit: 160dfa0�� The client declared the variable

MAX_TOTAL_SUPPLY as immutable by adding the immutable modifier into this

variable.

17

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/7dd3be54-d815-4c40-834c-b26cb975c4f8

F-2024-1968 - Floating Pragma - Info

Description: Contracts should be deployed with the same compiler version and flags that have

been tested thoroughly. Locking the Pragma helps ensure that contracts do not

accidentally get deployed using, for example, an outdated compiler version that

might introduce bugs that affect the contract system negatively.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Recommendations

Remediation: Use a fixed version of the compiler (^ symbol should be removed from Pragma).

Resolution: Remediation(revised commit: 160dfa0�� The client used a fixed version of the

compiler (^ symbol removed from Pragma).

18

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/c5d3e2d6-6f25-49c9-9b8e-f76b75943e97

F-2024-1969 - Custom Errors in Solidity to enhance gas e�ciency - Info

Description: Starting from Solidity version 0.8.4, the language introduced a feature

known as "custom errors". These custom errors provide a way for developers to

define more descriptive and semantically meaningful error conditions without

relying on string messages. Prior to this version, developers often used the

require statement with string error messages to handle specific conditions or

validations. However, every unique string used as a revert reason consumes gas,

making transactions more expensive.

if statement along with revert and custom errors, on the other hand, are

identified by their name and the types of their parameters only, and they do not

have the overhead of string storage. This means that, when using custom errors

instead of require statements with string messages, the gas consumption can

be significantly reduced, leading to more gas-efficient contracts.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Mitigated

Recommendations

Remediation: It is recommended to use custom errors instead of revert strings to reduce gas

costs, especially during contract deployment. Custom errors can be defined using

the error keyword and can include dynamic information.

Resolution: Remediation(revised commit: 160dfa0�� The client fixed previous

implementation, but during the remediation process, the client implemented

renounceOwnership function, which has string message instead of custom error.

19

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/065ceb8d-461a-4213-83ee-1a41fa4b664d

F-2024-1971 - Large numeric literals should use underscores for readability -

Info

Description: From a security perspective, the use of underscores in large numeric literals in

smart contracts is a practice that significantly enhances readability and

maintainability, which are key factors in ensuring the security and reliability of

smart contracts.

Prevents Misinterpretation� Large numbers without any separators can be

difficult to read and easy to misinterpret. For example, it's easier to correctly

read 1_000_000_000 than 1000000000. This clarity is crucial in smart

contracts where a single digit can dramatically change the contract's

behavior.

Reduces Human Error� Readability is directly linked to the likelihood of human

error. Developers are less likely to make mistakes in interpreting or modifying

code that is clear and easy to understand.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Recommendations

Remediation: Implement Underscores in Large Numeric Literals� It is strongly recommended to

enhance the readability of large numeric literals by incorporating underscores (_)

as separators. This practice aligns with the latest best practices in smart contract

development and significantly aids in reducing human error.

 Current format:

MAX_TOTAL_SUPPLY = 100000000 * 10 ** decimals(); // Defines the max total su

pply.

_mint(msg.sender, 1000000 * 10 ** decimals()); // Mints initial supply.

Recommended format:

MAX_TOTAL_SUPPLY = 100_000_000 * 10 ** decimals(); // Defines the max total

supply.

_mint(msg.sender, 1_000_000 * 10 ** decimals()); // Mints initial supply.

Resolution: Remediation(revised commit: 160dfa0�� The client fixed this observation by

changing implemented numbers to the recommended format.

20

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/9ada8333-c1fc-402d-86d1-e79aef0c15a6

F-2024-1974 - Misleading Token naming - Info

Description: It is stated in the NatSpecs that this token is a wrapped version of the CADAI

token, but its name does not mention it.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Accepted

Recommendations

Remediation: Change the token name to inform users that it is a wrapped token.

Resolution: Remediation(revised commit: 160dfa0�� The client accepted this observation.

21

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/36fa37b4-222e-44e2-beaf-7531bc2aa4b3

F-2024-2023 - Functions not used internally can be marked as external -

Info

Description: The function mint is currently set to the public visibility but it never called

internally.

function mint(address to, uint256 amount) public onlyOwner {}

If other functions do not call mint function, this function should be marked as

external to reduce gas costs when calling it.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Recommendations

Remediation: Change the mint function visibility from public to external.

Resolution: Remediation(revised commit: 160dfa0�� The client changed the mint function

visibility from public to external.

22

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/1192b49a-e41c-4f86-ba68-698bfacd1594

F-2024-2025 - Solidity version 0.8.20 might not work on all chains due to

`PUSH0` - Info

Description: The Solidity version 0.8.20 employs the recently introduced PUSH0 opcode in the

Shanghai EVM. This opcode might not be universally supported across all

blockchain networks and Layer 2 solutions. Thus, as a result, it might be not

possible to deploy solution with version higher or equal than 0.8.20 on some

blockchains.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Accepted

Recommendations

Remediation: It is recommended to verify whether solution can be deployed on particular

blockchain with the Solidity version 0.8.20 ��. Whenever such deployment is not

possible due to lack of PUSH0 opcode support and lowering the Solidity version is

a must, it is strongly advised to review all feature changes and bugfixes in �Solidity

releases](https://soliditylang.org/blog/category/releases/). Some changes may

have impact on current implementation and may impose a necessity of maintaining

another version of solution.

Resolution: Remediation(revised commit: 160dfa0�� The client accepted this observation.

23

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/56189aff-0bc8-4634-947f-2587df636351
https://soliditylang.org/blog/category/releases/

F-2024-2194 - Constants should be de�ned rather than using magic

numbers - Info

Description: The amount of tokens to be minted to the deployer is set manually in the

constructor without any context.

Assets:
wCADAI.sol [https://github.com/CADAICO/contracts]

Status: Fixed

Recommendations

Remediation: Define the amount of tokens to be minted to the deployer as a constant, rather

than initializing it in the constructor.

Resolution: Remediation(revised commit: 160dfa0�� The client added the initialMint

constant variable.

24

https://portal.hacken.io/App/Projects/Details/14fb285e-f15f-428c-b01f-d0445c03c037/Finding/aaf7c89f-a416-4d82-868f-70d126bb77b8

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of

which are disclosed in this report �Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the

code. The report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do

not consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-

free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that

you should not rely on this report only — we recommend proceeding with several independent audits and a

public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language,

and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the

Consultant cannot guarantee the explicit security of the audited smart contracts.

25

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited

scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to

asset loss. Contradictions and requirements violations. Major deviations from best practices are also

in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality score.

26

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/CADAICO/contracts

Commit 83cb55e

Whitepaper Whitepaper.pdf

Requirements Whitepaper.pdf

Technical Requirements N/A

Contracts in Scope

./contracts/wCADAI.sol

27

https://github.com/CADAICO/contracts%C2%A0
https://assets-global.website-files.com/64947061a6b14cfc0cc6d7d5/65f35179925230f605187c04_CADAICO%20Whitepaper.pdf
https://assets-global.website-files.com/64947061a6b14cfc0cc6d7d5/65f35179925230f605187c04_CADAICO%20Whitepaper.pdf

