
Smart Contract Code

Review And Security

Analysis Report

Customer: Dexponent

Date: 22/04/2024

We express our gratitude to the Dexponent team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Dexponent emerges as an institutional-grade liquid staking platform designed to cater to institutions'

distinct needs. It ensures clean staking practices, employs a non-custodial approach, separates funds,

and introduces clETH, enabling instant liquidity for staked ETH. Dexponent also implements Account

Abstraction for enhanced security and offers diverse utilities through clETH, presenting a comprehensive

solution for institutions entering the liquid staking space.

Platform: EVM

Language: Solidity

Tags: Staking

Timeline: 21/03/2024 � 22/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking

Commit 694381d07ab9f2dab336afc54a8bc7e7aa4e42c6

2

https://hackenio.cc/sc_methodology
https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking

Audit Summary

10/10 8/10 84.26% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9/10
The system users should acknowledge all the risks summed up in the risks section of the report

9 9 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 3

High 1

Medium 5

Low 0

Vulnerability Status

F�2024�1698 � Amount of Unstaked Tokens Is Not Deducted From The Staked Amount Fixed

F�2024�1699 � Maximum Deposit Requirement Violation Fixed

F�2024�1745 � Admin Might 'burn' Tokens From Any Address Fixed

F�2024�1746 � Liquidating Is Not Possible If The Borrower Do Not Approve Enough Tokens Fixed

F�2024�1748 � Possible Discrepancy Between The Actual Contract Balance and Recorded Balance Fixed

F�2024�2120 � Mismatch Between Documentation and Implementation Fixed

F�2024�2131 � Fund Lock in LoanLogic Contract During liquidateCollateral Process Fixed

F�2024�2134 � Unfinalized code block Fixed

F�2024�2136 � Lack Of Validation For The Oracle Data Fixed

3

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/8b8dfcab-ce6a-415a-8d19-843da99e6682
https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/43b9bc43-59ed-4efa-8b1f-f6cba0af358a
https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/90fe4178-15c4-40ce-b769-6f77632d8bbf
https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/dfa126c7-9b1b-44c6-9e4e-293fd3b7194e
https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/d74c905e-d66e-4373-9c65-840681ba5f3e
https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/f8cd0c6c-a4f9-4841-bdee-aecae128b446
https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/1a510852-fd2a-40e3-b103-4852186e61ef
https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/26e2958c-051b-4edb-a6d9-fce6b079531e
https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/dab5b3c0-4e33-4e8c-9963-ab9303d1b09a

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of

this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Dexponent

Audited By Max Fedorenko, Roman Tiutiun

Approved By Grzegorz Trawinski

Website https://dexponent.com/

Changelog 27/03/2024 � Preliminary Report, 22/04/2024 � Final Report

4

https://dexponent.com/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 22

Disclaimers 34

Appendix 1. Severity Definitions 35

Appendix 2. Scope 36

System Overview

Dexponent is a staking protocol with the following contracts:

ClEth.sol - the contract operates as an ERC20 token but with expanded functionalities tailored for

minting, burning, pausing functionalities, managing rewards, and assigning roles to other contracts or

addresses.

TokenProxy.sol - the contract serves as a proxy for interacting with another contract while enabling

transparent upgrades.

WClETH.sol - the contract is an ERC20 token with additional functionalities inherited from

TokenStorage, OwnableUpgradeable, and PausableUpgradeable.

StakeHolder.sol - the contract serves as a secure holding space, acting as an intermediary or escrow

for the Ethereum �ETH� staked by individual users.

StakingMaster.sol - the contract is the central contract of the staking system. It handles the logic for

users staking ETH, managing their stakes, unstake, and interacting with the `CLETH` token and

individual `StakeHolder` contracts.

StakingMasterStorage.sol - the contract defines storage variables and mappings used by a staking

master contract.

Event.sol - contract declares several events used to emit notifications about different actions.

TokenStorage.sol - abstract contract defines storage variables and emits an event.

LoanLogic.sol - the contract facilitates the management of loans and collateral within a lending

system. It includes functions for creating loans, repaying loans, calculating loan parameters such as

interest rates and maximum loan amounts, and liquidating collateral.

LoanStorage.sol - contract serves as a storage contract holding all state variables and structures

related to loans and collateral within a lending system.

Privileged roles

The owner of the LoanLogic.sol contract can update the CLETH price.

The owner of the StakeHolder.sol contract can be deposited to Figment.

The owner of the StakingMaster.sol contract can update the withdrawal status, claim a reward

for Wcleth, and claim a reward for Cleth.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed

scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Code quality

The total Code Quality score is 8 out of 10.

Code contains redundant code.

Test coverage

Code coverage of the project is 84.26% (branch coverage).

Security score

Upon auditing, the code was found to contain 3 critical, 1 high, 5 medium, and 0 low severity issues.

After the retest, most of the previously identified issues were resolved, leading to a security score 10 out

of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects of

the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

Admin might update the implementation of the Staking and Loan Logic anytime.

Admin approval is needed to unstake the funds.

Operations with CLETH token might be paused by admin.

Admin is responsible for accruing rewards individually to for all the stakers.

The Price Oracle which is used by the Loan Logic contract is set by the admin and is out of scope.

8

Findings

Vulnerability Details

F-2024-1746 - Liquidating Is Not Possible If The Borrower Do Not

Approve Enough Tokens - Critical

Description: The LoanLogic contract has the liquidateCollateral function

responsible for the liquidation of the loans. The function might be activated if

the loan to value reaches certain threshold liquidationThreshold.

However the contract tries to get the collateral amount back from the

borrower, but the execution of such code requires the borrower allowance.

require(clethToken.transferFrom(loan.borrower,

address(this), loan.collateralAmount), "Collateral transfer

failed");

This leads to the inability to liquidate the borrowing if the borrower does not

want to and lock of the collateral tokens on the contract.

Assets:
core/base/LoanLogic.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Classification

Impact: Likelihood �1�5�� 5

Impact �1�5�� 5

Exploitability �0�2�� 1

Complexity �0�2�� 1

Final Score: 4.8 �Critical)

Hacken Calculator Version: 0.6

Severity: Critical

Recommendations

Remediation: Clarify the expected result and rework the liquidation logic, rework the

liquidation logic to enable collateral withdrawals for liquidated borrowings by

the admin.

Remediation �Revised Commit: df787f4�� The issue was resolved by

ensuring that the user's funds are held within the LoanLogic Smart Contract.

9

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/dfa126c7-9b1b-44c6-9e4e-293fd3b7194e

Consequently, the condition requiring a clETH fund allowance from the user

has been removed.

10

F-2024-2131 - Fund Lock in LoanLogic Contract During

liquidateCollateral Process - Critical

Description: The liquidateCollateral() function of the LoanLogic.sol contract,

intended for liquidation of collateral for the specified loan.

function liquidateCollateral(

uint256 loanId

) public LoanIdNotExits(loanId) nonReentrant {

Loan storage loan = loans[loanId];

require(!loan.isRepaid, "Loan is already repaid or liquidated");

uint256 currentPrice = fetchCLETHPrice();

uint256 loanValueInCLETH = loan.debt / currentPrice;

uint256 currentLTV = calculateMaxLoanAmount(loanValueInCLETH);

require(

currentLTV > liquidationThreshold,

"Loan LTV is below liquidation threshold"

);

transferTokens(clethToken, address(this), loan.collateralAmount);

loan.isRepaid = true;

loan.debt = 0;

totalLoans -= loan.amount;

emit CollateralLiquidated(loanId, loan.collateralAmount);

}

In such a case, liquidateCollateral() function can be executed by

anyone and liquidates any collateral and locks the funds in the

LoanLogic.sol contract.

Assets:
core/base/LoanLogic.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Classification

Impact: Likelihood �1�5�� 5

Impact �1�5�� 5

Exploitability �1�2�� 1

Complexity �0�2�� 1

Final Score: 4.8 �Critical)

Severity: Critical

Recommendations

Remediation: Conduct a thorough review of the liquidateCollateral() function's

logic, and create withdraw() function.

11

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/1a510852-fd2a-40e3-b103-4852186e61ef

Remediation �Revised Commit: 079882�� The issue was resolved by

transferring collateral to a recoveryAddress.

Evidences

Proof of Concept �POC� Steps:

Reproduce:
�� Pre-Condition State� Assume an user created a loan of using

createLoan() and has a balance with clethToken.

�� Transaction Execution� A user attempts to invoke the

liquidateCollateral() with a specific loanId.

�� Post-Transaction State: clethToken were transferred to the

LoanLogic.sol.

�� Post-Transaction State: The clethToken is locked within the contract,

preventing any withdrawals by external parties.

it("Fund Lock in LoanLogic Contract During liquidateCollateral Process

", async () => {

const balanceBefore = await clETH.balanceOf(loanStorage.address);

console.log("balanceBefore", balanceBefore);

await loanLogicContract.connect(user1).createLoan(1000)

await loanLogicContract.connect(user2).liquidateCollateral(1);

const balanceAfter = await clETH.balanceOf(loanStorage.address);

console.log("balanceAfter", balanceAfter);

Results:
balanceBefore 0

balanceAfter 1000

✓ Fund Lock in LoanLogic Contract During liquidateCollateral Process

1 passing (2s)

Files:

12

F-2024-2134 - Un�nalized code block - Critical

Description: The StakeHolder.sol contracts contain functions sendEth() logic, this

function is used for testing purposes and remains unused within the

contracts. The function allows anybody to transfer arbitrary amount of ETH

from the contract to any address.

function sendEth(

address payable recipient,

uint256 amount

) external payable {

recipient.transfer(amount);

}

Assets:
core/base/StakeHolder.sol

[https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Simple

Severity: Critical

Recommendations

Remediation: It is recommended to remove the sendEth() function.

Remediation �Revised Commit: 079882�� The issue was resolved by

removing the sendEth() function.

13

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/26e2958c-051b-4edb-a6d9-fce6b079531e

F-2024-1699 - Maximum Deposit Requirement Violation - High

Description: The project has the functions to validate the maximum amount which is

allowed to be deposited within stake and stakeForWCLETH functions,

however the current implementation checks if the amount of tokens to stake

is higher than the MAX_DEPOSIT_AMOUNT amount, but not lower.

function stake() public payable {

require(msg.value >= MAX_DEPOSIT_AMOUNT, "Must send ETH to stake");

// ...

}

This lead to the users inability to stake less than 32 ETH.

Assets:
core/base/StakingMaster.sol

[https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking]

Status: Fixed

Classification

Impact: Likelihood �1�5�� 5

Impact �1�5�� 3

Exploitability �0�2�� 1

Complexity �0�2�� 1

Final Score: 3.8 �High)

Hacken Calculator Version: 0.6

Severity: High

Recommendations

Remediation: It is recommended to check if the deposited amount is less than 32 ETH,

with the updated required statement:

require(msg.value <= MAX_DEPOSIT_AMOUNT, "Must send ETH to stake");

Remediation �Revised Commit: df787f4�� The Dexponent team fixed the

issue by implementing _stake() function with require check:

require(msg.value >= MIN_DEPOSIT_AMOUNT, "Must sent minimum 32 ETH");

14

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/43b9bc43-59ed-4efa-8b1f-f6cba0af358a

F-2024-1698 - Amount of Unstaked Tokens Is Not Deducted From The

Staked Amount - Medium

Description: The StakingMaster.sol contract has the logic within the unstake()

functions responsible for requesting tokens to be unstacked. The function

does not decrease the stake amount which allows users to request unstake

amount which is higher than the actual staked amount.

function unstake(uint256 amount) public {

require(amount != 0, "Amount can not be zero");

require(StakedBalance[msg.sender] >= amount, "Not enough staked ETH");

require(clETH.balanceOf(msg.sender) >= amount, "Not enough clETH");

clETH.transferFrom(

msg.sender,

address(StakeHolders[msg.sender]),

amount

);

WithdrawalBalance[msg.sender] += amount;

emit Unstaked(msg.sender, amount);

}

This allows users to request unstaking tokens more than they staked.

Assets:
core/base/StakingMaster.sol

[https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking]

Status: Fixed

Classification

Impact: Likelihood �1�5�� 5

Impact �1�5�� 1

Exploitability �0�2�� 1

Complexity �0�2�� 1

Final Score: 2.8 �Medium)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

Remediation: Update the logic of the unstake function do disallow unstake requests for

more than it was previously staked.

Remediation �Revised Commit: df787f4�� The Dexponent team resolved the

issue by implementing a functionality that verifies if the requested amount to

unstake is not greater than the available staked balance, ensuring that users

cannot unstake more tokens than they have staked.

15

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/8b8dfcab-ce6a-415a-8d19-843da99e6682

F-2024-1745 - Admin Might 'burn' Tokens From Any Address - Medium

Description: The vulnerability in the burn() function in the CLETH.sol contract allows an

admin with the BURNER_ROLE to burn tokens from any address. This can

result in a significant loss of value for users.

function burn(

address from,

uint256 amount

) external onlyRole(BURNER_ROLE) whenNotPaused {

require(amount > 0, "CLETH: burn amount must be greater than zero");

_burn(from, amount);

}

Assets:
core/token/ClEth.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Classification

Impact: Likelihood �1�5�� 5

Impact �1�5�� 4

Exploitability �1�2�� 2

Complexity �0�2�� 0

Final Score: 2.7 �Medium)

Severity: Medium

Recommendations

Remediation: It is recommended to include function burnFrom() from

ERC20BurnableUpgradeable library from OpenZeppelin. This library

includes the burn() and burnFrom() functions, ensuring that only the

owner of ERC20 tokens or an approved address can burn tokens. By

implementing this library, addresses with the BURNER_ROLE will no longer

have the capability to burn user tokens and tokens will be protected.

Remediation �Revised Commit: df787f4�� The Dexponent team resolved the

issue by introducing a burnFrom() function that includes a validation step to

ensure the user's approval before burning tokens from a specific address.

Evidences

Reproduce:
// SPDX-License-Identifier: AGPL-3.0-only

pragma solidity ^0.8.18;

16

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/90fe4178-15c4-40ce-b769-6f77632d8bbf

import "forge-std/Test.sol";

import "forge-std/console.sol";

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import {CLETH} from "../contracts/core/token/ClEth.sol";

import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1

967Proxy.sol";

contract Hack is Test {

address public alice = makeAddr("bob");

address public bob = makeAddr("bob");

address public owner = makeAddr("owner");

CLETH cleth;

function setUp() public {

uint256 amount = 1000e18;

vm.startPrank(owner);

CLETH impl = new CLETH();

ERC1967Proxy proxy = new ERC1967Proxy(address(impl), "");

cleth = CLETH(address(proxy));

cleth.initialize(owner);

vm.label(address(cleth), "CLETH");

cleth.grantRoles(owner);

cleth.mint(alice, 1000e18);

cleth.mint(bob, amount);

vm.stopPrank();

}

function test_burnTokens() public {

uint256 amountToBurt = 1000e18;

vm.startPrank(owner);

console.log("Alice balance before: ", cleth.balanceOf(alice));

console.log("Bob balance before: ", cleth.balanceOf(bob));

cleth.burn(alice, amountToBurt);

cleth.burn(bob, amountToBurt);

console.log("Alice balance after: ", cleth.balanceOf(alice));

console.log("Bob balance after: ", cleth.balanceOf(bob));

vm.stopPrank();

}

}

Files:

17

F-2024-1748 - Possible Discrepancy Between The Actual Contract

Balance and Recorded Balance - Medium

Description: The LoanLogic contract allows to specify the amount of USDC reserves

totalUSDCReserve and CLETH reserves totalCLETHReserve during the

initialisation of the smart contract, but these values might be different from

the actual one,

This might lead to the contract denial of service until the contract balance is

increased to match the recorded values.

Assets:
core/base/LoanLogic.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Classification

Impact: Likelihood �1�5�� 3

Impact �1�5�� 3

Exploitability �0�2�� 1

Complexity �0�2�� 1

Final Score: 2.8 �Medium)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

Remediation: Verify during the initialisation that the smart contract has enough usdc and

cleth tokens on the balance.

Remediation �Revised Commit: df787f4�� The issue was resolved by

removing totalUSDCReserve and totalCLETHReserve during the

initialization of the smart contract.

18

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/d74c905e-d66e-4373-9c65-840681ba5f3e

F-2024-2120 - Mismatch Between Documentation and Implementation

- Medium

Description: The Documentation for the Borrowing Protocol, specifies certain

functionalities and behaviors that do not match the actual implementation of

LoanLogic.sol contract.

Borrowing Protocol

9. Liquidation of funds:

The Liquidation threshold is for now a constant value at 92%.

The implementation's initialize() function contains:

function initialize(

address _usdcTokenAddress,

address _clethTokenAddress,

address _priceFeedAddress

)

public

initializer

...

{

...

liquidationThreshold = 90;

...

}

This can result in a potential unexpected delay of asset liquidation where the

total value of locked assets is reduced to 90%, instead of the expected 92%,

due to a discrepancy between user expectations and actual implementation

in code.

 … liquidation of the loan takes place and clETH is transferred to the

clETH pool on the smart contract.

The implementation's liquidateCollateral() function contains:

function liquidateCollateral(

uint256 loanId

) public LoanIdNotExits(loanId) nonReentrant {

...

);

transferTokens(clethToken, address(this), loan.collateralAmount);

...

}

In this scenario, clETH tokens are retained within the contract and are not

transferred elsewhere.

Assets:
core/base/LoanLogic.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

19

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/f8cd0c6c-a4f9-4841-bdee-aecae128b446

Classification

Impact: Likelihood �1�5�� 5

Impact �1�5�� 1

Exploitability �1�2�� 1

Complexity �0�2�� 1

Final Score: 2.8 �Medium)

Severity: Medium

Recommendations

Remediation: Review the Documentation and update the implementation to match the

expected result.

Remediation �Revised Commit: 079882�� The issue was resolved by setting

the liquidation threshold to 90%, and the liquidateCollateral() function

in the implementation now transfers tokens to the recovery address.

20

F-2024-2136 - Lack Of Validation For The Oracle Data - Medium

Description: The LoanLogic contract has the fetchCLETHPrice() function to fetch the

price of USDC/cLETH tokens pair. However the function does not checks if

the price is outdated and there is no validation if the return value is zero. The

price is used to calculate the collateral amount.

function fetchCLETHPrice() public view returns (uint256) {

(

,

/*uint80 roundID*/ int price,

,

/*uint startedAt*/ uint256 timeStamp /*uint80 answeredInRound*/,

) = priceFeed.latestRoundData();

return uint256(price);

}

This might lead to the loss of funds due to possible collateral

underestimation.

Assets:
core/base/LoanLogic.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Classification

Impact: Likelihood �1�5�� 1

Impact �1�5�� 5

Exploitability �0�2�� 1

Complexity �0�2�� 1

Final Score: 3.3 �Critical)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

Remediation: Implement the validation to check if the price is outdated and validation if

the price if higher than zero. Implement pausing functionality for emergency

cases.

Remediation �Revised Commit: 079882�� The issue was resolved by

verifying whether the price is up-to-date, incorporating a require statement

to ensure the price is greater than zero, and pausing functionality was

implemented.

21

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/dab5b3c0-4e33-4e8c-9963-ab9303d1b09a

Observation Details

F-2024-1683 - Commented Code Part - Info

Description: In the contract, LoanStorage.sol line 36 and ClEth.sol lines 17�19,

LoanLogic.sol line 75 is commented on. The commented code may

suggest that the development team disabled part of functionality e.g. for

testing purposes and the code might be intended to be used in the final

release.

ClEth.sol:

// constructor() {

// _disableInitializers();

// }

LoanStorage.sol:

// OwnableUpgradeable.__Ownable_init();

LoanLogic.sol:

// uint256 maxLTV = 70;// Loan-to-Value ratio

Assets:
core/token/ClEth.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Recommendations

Remediation: Remove commented parts of the code.

Remediation �Revised Commit: df787f4�� The Dexponent team removed

commented parts of the code.

22

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/22e75b6f-33c2-41e0-b5d7-ddf9a8567d8b

F-2024-1690 - Initializer Is Not Disabled In Constructor - Info

Description: According to the OpenZeppelin documentation, upgradeable contracts

should invoke the method _disableInitializers() in their

constructor() to disable implementation contract, preventing them from

being used or altered.

However, that functionality is commented in the ClEth.sol upgradeable

contract.

Assets:
core/token/ClEth.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Recommendations

Remediation: Follow OpenZeppelin’s documentation regarding _disableInitializers()

in ClEth.sol upgradeable contract and uncomment the function.

Remediation �Revised Commit: df787f4�� The Dexponent team

implemented constructor with _disableInitializers() in ClEth.sol.

23

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/4dca52f5-ba43-48cd-8652-3e83d6b5f093

F-2024-1693 - Mismatch Between WhitePaper and Implementation -

Info

Description: The WhitePaper for the StakeHolder Contract, CLETH Contract, and the

StakingMaster Contract specify certain functionalities and behaviors that

do not match the actual implementation of these contracts.

StakeHolder Contract:

1. Constructor:

constructor(address _staker, address _masterContract) payable {

require(msg.value > 0, "Must send ETH to create a stake");

staker = _staker;

masterContract = _masterContract;

emit DepositReceived(_staker, msg.value);

}

The implementation's constructor() contains:

constructor(

address _staker,

address _masterContract,

address _masterContractOwner,

IFigmentEth2Depositor _figmentDepositor,

IERC20 _clethToken

) payable {

staker = _staker;

masterContractOwner = _masterContractOwner;

masterContract = _masterContract;

figmentDepositor = _figmentDepositor;

clethToken = _clethToken;

emit DepositReceived(_staker, msg.value);

}

2. releaseFunds(uint256 amount):

//Function to release funds to the staker

function releaseFunds(uint256 amount) external {

...

}

The releaseFunds() is missed.

3. deposit():

// Function to allow the staker to add more funds to the StakeHolder

function deposit() external payable {

...

}

The deposit() is missed in the implementation.

CLETH Contract:

3. addReward, setReward:

function addReward(address account, uint256 amount) public onlyRole(MI

NTER_ROLE) {

...

}

function setReward(address account, uint256 amount) public onlyRole(MI

NTER_ROLE) {

24

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/e81b6ccd-4af2-4379-b972-3ba29d4f824b

...

}

addReward(), setReward() functions are missed in the implementation.

4. claimReward(address account):

function claimReward(address account) public {

...

}

claimReward(address account) is missed in the implementation.

StakingMaster Contract:

1� stake():

function stake() public payable {

...

}

The stake() implementation contains:

function stake() public payable {

...

}

2� unstake(uint256 amount):

function unstake(uint256 amount) public onlyWhitelisted notBlacklisted

{

...

}

The unstake() implementation contains:

function unstake(uint256 amount) public {

...

}

3� addToWhitelist(address user) :

function addToWhitelist(address user) public onlyOwner {

...

}

addToWhitelist(address user) is missed in the implementation.

4� addToBlacklist(address user) :

function addToBlacklist(address user) public onlyOwner {

...

}

addToBlacklist() is missed in the implementation.

5� removeFromWhitelist(address user) and removeFromBlacklist(address

user) :

function removeFromWhitelist(address user) public onlyOwner {

...

}

25

function removeFromBlacklist(address user) public onlyOwner {

...

}

removeFromWhitelist(), removeFromBlacklist() are missing in the

implementation.

6� transferOwnership(address newOwner) :

function transferOwnership(address newOwner) public onlyOwner {

...

}

transferOwnership() is missed in the implementation.

7� Utility Functions:

function getStakedBalance(address account) public view returns (uint25

6) {

...

}

function getLastStakeTime(address account) public view returns (uint25

6) {

...

}

function getTotalPool() public view returns (uint256) {

...

}

function getStakeHolderInfo(address user) public view returns (address

, uint256) {

...

}

getStakedBalance(), getLastStakeTime(), getTotalPool(),

getStakeHolderInfo() are missing in the implementation.

8� depositToNodeOperators:

/function setNodeOperatorsDepositor(address _NodeOperatorsDepositor) e

xternal onlyOwner {

NodeOperatorsDepositor = INodeOperatorsEth2Depositor(_NodeOperatorsDep

ositor);

}

function depositToNodeOperators(

address payable stakeHolderAddress,

string calldata pubkey,

string calldata withdrawal_credentials,

string calldata signature,

string calldata deposit_data_root

) external onlyOwner {

...

}

function hexStringToBytes(string memory hexString) internal pure retur

ns (bytes memory) {

...

}

function hexStringToBytes32(string memory source) internal pure return

s (bytes32 result) {

...

}

setNodeOperatorsDepositor(), setNodeOperatorsDepositor(),

hexStringToBytes(), hexStringToBytes32() are missing in the

implementation.

26

However, upon reviewing the actual implementation of the

StakeHolder.sol, CLETH.sol and StakingMaster.sol contracts, it is

evident that there are different implementations between the WhitePaper

and the code.

This discrepancy between the WhitePaper and the contract's code leads to

confusion and potential misunderstandings about the contract's behavior

and capabilities.

Assets:
core/base/StakeHolder.sol

[https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking]

core/token/ClEth.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Recommendations

Remediation: Review the WhitePaper and update the implementation to match the

expected result.

Remediation �Revised Commit: df787f4�� The Dexponent team provided

valid documentation.

27

F-2024-1702 - Redundant Code Block - Info

Description: The LoanStorage.sol and WClETH.sol contracts contain functions with

logic, but some of these functions include commented, redundant code, or

unused parameters.

__LoanStorage_init() function in LoanStorage.sol contract intended

to initialize a contract but has commented code.

function __LoanStorage_init() internal initializer {

// OwnableUpgradeable.__Ownable_init();

}

unstake() function in WClETH.sol does not utilize unstake pubkeys

argument, and redundant function unpaus1e().

function unstake(

uint256 amount,

bytes calldata pubkeys

) public whenNotPaused {

require(amount > 0, "WCLETH: burned amount must be greater than zero")

;

_burn(msg.sender, amount);

emit unstakedRequested(msg.sender, amount, pubkeys);

}

function unpaus1e() public pure returns (string memory) {

return "HELLo";

}

Redundant parts of the code create excessive gas costs.

Assets:
core/token/WClETH.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Recommendations

Remediation: Remove redundant code blocks, and parameters in order to consume less

gas.

Remediation �Revised Commit: df787f4�� The Dexponent team removed

unused and redundant code.

28

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/7a49c9b2-9eaf-4649-b5ea-e30cc178df6a

F-2024-1751 - Worng Event Naming Convention - Info

Description: The event withdrawalStatusUpdated in the Event.sol contract does not

follow the Solidity naming style. According to Solidity documentation and

best practices:

Events in Solidity are typically named using CamelCase starting with an

uppercase letter. This convention enhances readability and consistency in

codebases.

Assets:
core/base/events/Event.sol

[https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking]

Status: Fixed

Recommendations

Remediation: It is recommended to follow Solidity's best practices and use CameCace for

withdrawalStatusUpdated event.

Remediation �Revised Commit: df787f4�� The Dexponent team

implemented the recommendation by using CameCace for

withdrawalStatusUpdated event.

29

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/4b6555a4-624f-4a2e-879a-709aea4f5b6a

F-2024-1753 - Missing Events Emi�ing For Critical Functions - Info

Description: Events for critical state changes should be emitted for tracking actions off-

chain. It was observed that events in LoanLogic.sol are missing in the

following functions:

updateCLETHPrice()

setInterestRateParameters()

setLTVParameters()

Events are crucial for tracking changes on the blockchain, especially for

actions that alter significant contract states or permissions. The absence of

events in these functions means that external entities, such as user

interfaces or off-chain monitoring systems, cannot effectively track these

important changes.

Assets:
core/base/LoanLogic.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Fixed

Recommendations

Remediation: Consider implementing and emitting events for the necessary functions.

Remediation �Revised Commit: df787f4�� The Dexponent team removed

updateCLETHPrice(), setInterestRateParameters(), and

setLTVParameters().

30

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/bb0bbe0a-1ad6-4fd4-8110-ed831cedd8a1

F-2024-2121 - Redundant State Variables - Info

Description: The contract LoanStorage.sol and StakeHolder.sol has redundant

state variables and events that are never used within the logic of the

contract. Within the contract such events and state variables are redundant:

event FundsSent, event ClethReceived, clethPrice, lastPrice.

This might indicate unfinalized code, decrease the code readability, and

increase Gas expenses during the contract deployment.

Assets:
core/base/StakeHolder.sol

[https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking]

Status: Fixed

Recommendations

Remediation: Rework the logic to remove the redundant events and state variable or utilize

them.

Remediation �Revised Commit: 079882�� The issue was resolved by

removing redundant events and state variables: event FundsSent, event

ClethReceived, clethPrice, lastPrice.

31

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/2126f718-af6f-4f82-830c-1dc483e3569e

F-2024-2122 - Redundant Math Calculations - Info

Description: In the LoanLogic.sol contract, the calculateMaxLTV() function contains

redundant math during the computation of the currentUtilization

variable:

uint256 currentUtilization = ((totalLoans / 1e18) * 100) /

((totalfund > 0 ? (totalfund / 1e18) : 1));

Assets:
core/base/LoanLogic.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Accepted

Recommendations

Remediation: The code block should be replaced with the equivalent to:

uint256 currentUtilization = (totalLoans * 100) /

(totalfund > 0 ? totalfund : 1);

to improve gas usage and code readability. This change simplifies the

calculation and makes the code more straightforward to understand.

Remediation �Revised Commit: f23c156�� The issue is unfixed, redundant

calculations are still present within the code.

32

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/2b7d0021-4fea-4d71-9300-27be7a34559d

F-2024-2920 - Admin Can Initiate clETH Token Minting - Info

Description: During the initialization of the clETH token contract, the system administrator

is assigned the DEFAULT_ADMIN_ROLE, which acts as the default admin role

for all other roles.

This enables the admin to grant the MINTER_ROLE to any account, allowing it

to mint clETH tokens.

Assets:
core/token/ClEth.sol [https://gitlab.ardourlabs.com/dexponent/smart-

contracts/staking]

Status: Accepted

Recommendations

Remediation: Assign the stakingMaster contract as the role manager for the

MINTER_ROLE during initialization. This ensures that no one else can

reassign the MINTER_ROLE.

Resolution: The client is aware of the risk and is responsible for proper role management.

33

https://portal.hacken.io/App/Projects/Details/9faa668d-4024-4c7d-a639-8a38714bb894/Finding/ddaf819f-e7a1-414b-9dde-957dbb09c5b0

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of

the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report �Source Code); the Source Code compilation, deployment,

and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of

the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility and

safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note

that you should not rely on this report only — we recommend proceeding with several independent

audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

34

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user

funds or contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more

limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot

lead to asset loss. Contradictions and requirements violations. Major deviations from best

practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality

score.

35

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Primary Scope

Details

Repository https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking

Commit 694381d07ab9f2dab336afc54a8bc7e7aa4e42c6

Whitepaper https://docs.dexponent.com/

Requirements
https://docs.google.com/document/d/1d2KDcb8vZUns6Pm-

xYeguJrxaUb6__kZGSdwTYbuXew/edit#heading=h.r6ltp1yoax1g

Technical

Requirements

https://docs.google.com/document/d/1d2KDcb8vZUns6Pm-

xYeguJrxaUb6__kZGSdwTYbuXew/edit#heading=h.r6ltp1yoax1g

Contracts in Scope

./contracts/core/ClEth.sol

./contracts/core/TokenProxy.sol

./contracts/core/Proxy.sol

./contracts/core/WClETH.sol

./contracts/core/base/StakeHolder.sol

./contracts/core/base/StakingMaster.sol

./contracts/core/base/StakingMasterStorage.sol

./contracts/core/base/events/Event.sol

./contracts/core/base/storage/TokenStorage.sol

./contracts/core/base/loanLogic.sol

./contracts/core/base/loanStorage.sol

36

https://gitlab.ardourlabs.com/dexponent/smart-contracts/staking
https://docs.dexponent.com/
https://docs.google.com/document/d/1d2KDcb8vZUns6Pm-xYeguJrxaUb6__kZGSdwTYbuXew/edit#heading=h.r6ltp1yoax1g
https://docs.google.com/document/d/1d2KDcb8vZUns6Pm-xYeguJrxaUb6__kZGSdwTYbuXew/edit#heading=h.r6ltp1yoax1g

