
Smart Contract Code

Review And Security

Analysis Report

Customer: Pikamoon

Date: 14/05/2024



We express our gratitude to the Pikamoon team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Pikamoon is a staking smart contract.

Platform: EVM

Language: Solidity

Tags: Staking

Timeline: 03/05/2024 � 14/05/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/orbit-cosmos/pikamoon-staking

Commit 86cf91c3e9d5f89fa4a16bea22b5cae262019a1a

2

https://hackenio.cc/sc_methodology
https://github.com/orbit-cosmos/pikamoon-staking


Audit Summary

10/10 10/10 80.68% 10/10
Security score Code quality score Test coverage Documentation quality score

Total 9.3/10 
The system users should acknowledge all the risks summed up in the risks section of the report

0 0 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 0

3



This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Pikamoon

Audited By Max Fedorenko, Roman Tiutiun

Approved By Grzegorz Trawiński, Ataberk Yavuzer

Website https://www.pikamoon.io/

Changelog 08/05/2024 � Preliminary Report

13/05/2024 � Second Review Report

14/05/2024 � Final Report

4

https://www.pikamoon.io/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 9

Disclaimers 14

Appendix 1. Severity Definitions 15

Appendix 2. Scope 16



System Overview

Pikamoon is a staking protocol with the following contracts:

CorePool  — a contract that manages token staking.

PikaStakingPool — is an upgradeable implementation of a staking pool for a token.

PoolController — manages staking pools and holds the rewards.

Stake — library responsible for the weight calculation and storing important constants related to

stake period, base weight, and multipliers utilized.

Privileged roles

The owner of the CorePool.sol contract can pause/unpause the staking contract, and set the

address which is responsible for approving the users staking rewards.

The owner of the PoolController.sol contract can register a new pool, update the rate of

PIKA distribution per second, changes the weight of the pool.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation quality score is 10 out of 10.

NatSpec covers the code and is sufficient.

Code quality

The total Code quality score is 10 out of 10.

Test coverage

Code coverage of the project is 80.68% (branch coverage).

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 0 low severity issues,

leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.3. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

Single Points of Failure and Control� The project is fully or partially centralized, introducing

single points of failure and control. This centralization can lead to vulnerabilities in decision-

making and operational processes, making the system more susceptible to targeted attacks or

manipulation.

Absence of Time-lock Mechanisms for Critical Operations� Without time-locks on critical

operations, there is no buffer to review or revert potentially harmful actions, increasing the risk of

rapid exploitation and irreversible changes.

Administrative Key Control Risks� The digital contract architecture relies on administrative keys

for critical operations. Centralized control over these keys presents a significant security risk, as

compromise or misuse can lead to unauthorized actions or loss of funds.

Single Entity Upgrade Authority� The contract grants a single entity the authority to implement

upgrades or changes. This centralization of power risks unilateral decisions that may not align

with the community or stakeholders' interests, undermining trust and security.

Absence of Upgrade Window Constraints� The contract suite allows for immediate upgrades

without a mandatory review or waiting period, increasing the risk of rapid deployment of

malicious or flawed code, potentially compromising the system's integrity and user assets.

Flexibility and Risk in Contract Upgrades� The project's contracts are upgradable, allowing the

administrator to update the contract logic at any time. While this provides flexibility in addressing

issues and evolving the project, it also introduces risks if upgrade processes are not properly

managed or secured, potentially allowing for unauthorized changes that could compromise the

project's integrity and security.

8



Findings

Vulnerability Details

Observation Details

F-2024-2017 - Code Contains `hardhat` Commented Import - Info

Description: In Solidity development, hardhat is a commonly used development

framework that provides tools for testing, debugging, and deploying smart

contracts. However, imports from hardhat in your Solidity code, such as

those used for testing or local development, should not make their way

into the final production version of the contract. These imports can bloat

the contract, lead to unnecessary complexity, and potentially introduce

security risks or unexpected behavior. Ensuring that production code is

clean, efficient, and free of development-only dependencies is crucial for

maintaining security and performance.

// import "hardhat/console.sol";

Assets:
CorePool.sol [https://github.com/orbit-cosmos/pikamoon-staking]

Status: Fixed

Recommendations

Remediation: Before finalizing and deploying your Solidity contracts, thoroughly review

the code to ensure all hardhat imports and related development-only

code are removed.

Resolution: The hardhat import was removed from the code in commit d677254.

9

https://portal.hacken.io/App/Projects/Details/96f2186a-5370-4b80-a2f8-aa45666c59e0/Finding/2b9ce8a1-b660-4cd9-995e-c252db62bdb9


F-2024-2356 - Redundant `_msgSender()`, Meta-Transactions Not

Implemented - Info

Description: The _msgSender() function is needed to handle the meta transactions, in

the OpenZeppelin library, it is used to support the development of the

libraries which might be used with the contracts with the specified

TrustedForwarder or to be used in such contracts directly. 

However, the current implementation is not a library and does not rewrite

the _msgSender() function to support meta transactions. This leads to

the redundancy, because the system do not utilize _msgSender()

features and used only as a substitute for msg.sender.

Assets:
CorePool.sol [https://github.com/orbit-cosmos/pikamoon-staking]

PoolController.sol [https://github.com/orbit-cosmos/pikamoon-staking]

Status: Fixed

Recommendations

Remediation: If _msgSender() is not going to be used in current implementation to

support the meta transactions it is recommended to use msg.sender to

prevent unforeseen issues and misinterpretations that may occur after the

future updates.

Resolution: The _msgSender() was replaced to msg.sender in commit d677254.

10

https://portal.hacken.io/App/Projects/Details/96f2186a-5370-4b80-a2f8-aa45666c59e0/Finding/f83010c4-e396-403e-8251-a04bf0269259


F-2024-2368 - Missing Events Emi�ing For Critical Functions - Info

Description: The following function does not emit relevant event after executing the

sensitive action of setting the verifierAddress.

This makes off-chain tracking of crucial state changes more complex.

Assets:
PoolController.sol [https://github.com/orbit-cosmos/pikamoon-staking]

Status: Fixed

Recommendations

Remediation: Consider emitting event after sensitive change occur to simplify off-chain

tracking of the contract state.

Resolution: The event emitting has been added to the aforementioned asset in

commit d677254.

11

https://portal.hacken.io/App/Projects/Details/96f2186a-5370-4b80-a2f8-aa45666c59e0/Finding/32aa8d36-2743-4b23-8a8d-3c65111d9548


F-2024-2708 - Solidity version 0.8.20 might not work on all chains

due to `PUSH0` - Info

Description: The Solidity version 0.8.20 employs the recently introduced PUSH0

opcode in the Shanghai EVM. This opcode might not be universally

supported across all blockchain networks and Layer 2 solutions. Thus, as

a result, it might be not possible to deploy a solution with version 0.8.20

>= on some blockchains.

pragma solidity 0.8.20;

Assets:
CorePool.sol [https://github.com/orbit-cosmos/pikamoon-staking]

PikaStakingPool.sol [https://github.com/orbit-cosmos/pikamoon-

staking]

PoolController.sol [https://github.com/orbit-cosmos/pikamoon-staking]

libraries/Errors.sol [https://github.com/orbit-cosmos/pikamoon-staking]

libraries/Stake.sol [https://github.com/orbit-cosmos/pikamoon-staking]

interfaces/ICorePool.sol [https://github.com/orbit-cosmos/pikamoon-

staking]

interfaces/IPikaMoon.sol [https://github.com/orbit-cosmos/pikamoon-

staking]

interfaces/IPoolController.sol [https://github.com/orbit-

cosmos/pikamoon-staking]

Status: Accepted

Recommendations

Remediation: It is recommended to verify whether a solution can be deployed on a

particular blockchain with the Solidity version 0.8.20 ��. Whenever such

deployment is not possible due to a lack of PUSH0 opcode support and

lowering the Solidity version is a must, it is strongly advised to review all

feature changes and bugfixes in �Solidity releases]

(https://soliditylang.org/blog/category/releases/). Some changes may have

an impact on the current implementation and may impose a necessity of

maintaining another version of the solution.

Resolution: The client acknowledges the risks and is responsible for ensuring

compatibility with the specific blockchain on which the code is deployed.

12

https://portal.hacken.io/App/Projects/Details/96f2186a-5370-4b80-a2f8-aa45666c59e0/Finding/c10df0ad-6264-423c-8896-6e7b81db15b7
https://soliditylang.org/blog/category/releases/


F-2024-2709 - Best practice violation due to usage of assert() - Info

Description: The usage of assert() in stake(), claimRewards() functions are a

violation of Solidity best practices, lowering the contract's code quality.

Quoting from Solidity Language Description document:

The assert function creates an error of type Panic(uint256).

The same error is created by the compiler in certain situations as l

isted below.

Assert should only be used to test for internal errors, and to check

invariants.

Properly functioning code should never create a Panic, not even on i

nvalid external input.

If this happens, then there is a bug in your contract which you shou

ld fix.

Assets:
CorePool.sol [https://github.com/orbit-cosmos/pikamoon-staking]

Status: Fixed

Recommendations

Remediation: It is recommended to replace assert check with require statement with

meaningful error message or if statement with Custom Error.

Resolution: The assert statements were replaced with the require statement within

the commit 61a7020.

13

https://portal.hacken.io/App/Projects/Details/96f2186a-5370-4b80-a2f8-aa45666c59e0/Finding/42acca64-0807-475b-91a0-9dd3b6798129


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

14



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

15

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/orbit-cosmos/pikamoon-staking

Commit 86cf91c3e9d5f89fa4a16bea22b5cae262019a1a

Whitepaper N/A

Requirements
https://github.com/orbit-cosmos/pikamoon-

staking/tree/main/docs

Technical

Requirements

https://github.com/orbit-cosmos/pikamoon-

staking/tree/main/docs

Contracts in Scope

./contracts/CorePool.sol

./contracts/PikaStakingPool.sol

./contracts/PoolController.sol

./contracts/libraries/Errors.sol

./contracts/libraries/Stake.sol

./contracts/interfaces/ICorePool.sol

./contracts/interfaces/IPikaMoon.sol

./contracts/interfaces/IPoolController.sol

16

https://github.com/orbit-cosmos/pikamoon-staking
https://github.com/orbit-cosmos/pikamoon-staking/tree/main/docs
https://github.com/orbit-cosmos/pikamoon-staking/tree/main/docs



