
Smart Contract Code

Review And Security

Analysis Report

Customer: Possum Labs

Date: 15/05/2024

We express our gratitude to the Possum Labs team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Platform: EVM

Language: Solidity

Tags: Stake; ERC20; ERC721

Timeline: 03/05/2024 � 08/05/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/PossumLabsCrypto/PortalsV2

Commit 17dd887dab420d4f39573cbb9c013e7106e02b0d

2

https://hackenio.cc/sc_methodology
https://github.com/PossumLabsCrypto/PortalsV2

Audit Summary

10/10 9/10 96% 9/10
Security score Code quality score Test coverage Documentation quality score

Total 9.6/10
The system users should acknowledge all the risks summed up in the risks section of the report

3 3 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 0

Medium 0

Low 2

Vulnerability Status

F�2024�2252 � Missing registered portals validation Fixed

F�2024�2256 � Impossible to mint token with ID equals 0 Fixed

F�2024�2453 � Arbitrage vulnerability in quoteBuyPortalEnergy and quoteSellPortalEnergy functions Fixed

3

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/a53f2719-3a47-4987-92f2-ad9b7e02bed3
https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/bb969bdd-d8d1-4ffc-a9ed-a0b0e6a5f3d0
https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/620e9e54-b48c-4a38-9bf0-0dcf4c9b8250

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of

this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Possum Labs

Audited By Carlo Parisi, Viktor Raboshchuk

Approved By Przemyslaw Swiatowiec

Website https://www.possumlabs.io/

Changelog 10/05/2024 � Preliminary Report

14/05/2024 � Final Report

4

https://www.possumlabs.io/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 15

Disclaimers 24

Appendix 1. Severity Definitions 25

Appendix 2. Scope 26

System Overview

The primary purpose of Possum Portals (Portals) is to enable users to receive upfront, fixed-rate yield

from DeFi staking opportunities instead of accruing yield over time at an unpredictable, variable rate.

Portals enable duration-independent speculation on expected future yield rates of the composed yield

sources (external protocols). Lastly, the funding mechanism of Portals allows PSM holders to deploy their

tokens to a productive use case by lending them to the Portal for a potential profit. The protocol has the

following contracts:

src/MintBurnToken.sol - an ERC20 contract with a permit and burnable extension, mintable by owner

src/PortalNFT.sol � This contract can save account information from a Portal user’s stake and also

return this information upon redemption. It has a single metadata URI that is used for all ID mints

because the relevant account data is saved inside the NFT itself instead of outsourcing this to

metadata. The metadata is merely a generic description, name, and picture.

src/PortalV2MultiAsset.sol - contains the main business logic related to upfront yield. Most of the

Portal functionality can only work when the vLP is activated. The contract accepts user deposits and

withdrawals of a specific token, routing deposits to an external protocol for yield generation. Users

accumulate portalEnergy points over time while staking their tokens, exchangeable for the PSM token

via the internal Liquidity Pool or minted as ERC20. PortalEnergy Tokens can be burned to increase a

recipient's internal balance, with users able to purchase more portalEnergy through the internal LP

using PSM. bTokens received during funding initialize the internal LP and can be redeemed against the

fundingRewardPool, consisting of PSM tokens. Users can mint NFTs representing their account

balances, which are transferable and can be redeemed to add balances back internally.

src/VirtualLP.sol � The shared, virtual liquidity pool that facilitates the payout of upfront yield and the

recovery of yield over time. Hosts the integration of the external protocol that generates the yield on

staked user assets. This contract acts as the shared, virtual LP for multiple Portals, each requiring

registration by the owner for a predetermined duration. Each Portal must be registered by the owner,

and once registered, Portals cannot be removed to ensure integrity. The full PSM amount within the LP

is accessible to provide upfront yield for each Portal, with capital staked through connected Portals

redirected to an external yield source. Yield is claimed and collected by this contract, which also

accepts PSM tokens during the funding phase, issuing bTokens as a receipt. These bTokens initialize

the internal LP and can be redeemed against the fundingRewardPool, filled over time with a 10% cut

from the Converter, an arbitrage mechanism sweeping token balances. Upon triggering the Converter,

the caller (arbitrager) must send a fixed amount of PSM tokens to the contract.

src/interfaces/IPortalV2MultiAsset.sol - interface for the PortalV2MultiAsset contract

src/interfaces/IVirtualLP.sol - interface for the VirtualLP contract.

Privileged roles

The owner of the MintBurnToken contract can mint tokens

The owner of the PortalNFT contract is the Portal that deploys it. Only the owner can call `mint()` and

`redeem()`.

The owner of the VirtualLP can create new Portals. The owner can be revoked by anyone. Only the

registered Portal can send PSM to a user, and deposit/withdraw assets to/from external protocols.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed

scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation quality score is 9 out of 10.

Functional requirements are partially missed:

Intended outcome of mathematical operations.

Technical description is provided.

Natspec is sufficient.

Code quality

The total Code quality score is 9 out of 10.

The development environment is configured.

Missing validations.

Rounding errors are present in the code.

Test coverage

Code coverage of the project is 96% (branch coverage).

Deployment and basic user interactions are covered with tests.

Test in the remediations are not running because the stack is too deep.

Security score

Upon auditing, the code was found to contain 1 critical, 0 high, 0 medium, and 2 low severity issues. Out of

these, 3 issues have been addressed and resolved, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.6 This score reflects

the combined evaluation of documentation, code quality, test coverage, and security aspects of the

project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

There is no limit set for amount of ERC20 tokens can be created, as a result, the token owner can mint

unlimited tokens, possibly disrupting the token supply and value.

The lack of documentation regarding the mathematics operations poses a significant risk. This makes

it harder for reviewers to understand what the code is meant to do, which is essential for accurately

assess both its security and correctness.

The ownership duration is configured for 9 days �7 days of the funding phase and 2 days of normal

operation). Once this period elapses, the owner can be removed, effectively preventing the creation of

new portals. Failure to register portals poses a risk to the protocol's functionality.

There are 2 out of scope contracts, IWater and PSM token. IWater in particular is interacted with a lot

in the VirtualLP.sol contract, but the contract functionality cannot be checked since it's out of scope,

this will lower the quality of the audit.

The convert() function in the VirtualLP.sol contract could potentially be exploited in scenarios where

the liquidity pool is low on PSM tokens. An attacker could execute a sequence of transactions to

extract value from the pool. The sequence involves selling a large amount of PSM tokens (thereby

buying PE�, executing the convert() function, and then buying back the initial amount of PSM tokens

(by selling PE�.

8

Findings

Vulnerability Details

F-2024-2453 - Arbitrage vulnerability in quoteBuyPortalEnergy and

quoteSellPortalEnergy functions - Critical

Description: The quoteBuyPortalEnergy() and quoteSellPortalEnergy() functions

in the PortalV2MultiAsset.sol contract are susceptible to an arbitrage

vulnerability. This vulnerability arises when a user buys a large amount of

Portal Energy �PE� tokens using the quoteBuyPortalEnergy() function and

then immediately sells these tokens using the quoteSellPortalEnergy()

function. The issue lies in the calculation of the reserves and the constant

product, which can lead to a situation where the user receives more PSM

tokens from the sale than they initially used for the purchase. This vulnerability

could potentially be exploited by an attacker to drain the PSM token reserves,

leading to significant financial loss for the liquidity pool

Assets:
interfaces/IPortalV2MultiAsset.sol

[https://github.com/PossumLabsCrypto/PortalsV2�

Status: Fixed

Classification

Impact: 5/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Complex

Likelihood �1�5�� 5

Impact �1�5�� 5

Exploitability �0�2�� 0

Complexity �0�2�� 2

Final Score: 4.6 �Critical)

Severity: Critical

Recommendations

9

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/620e9e54-b48c-4a38-9bf0-0dcf4c9b8250

Remediation: The arbitrage vulnerability in the quoteBuyPortalEnergy() and

quoteSellPortalEnergy() functions appears to stem from a precision loss

in the denominator of the amountReceived calculation in

quoteSellPortalEnergy(). To mitigate this, it is recommended to add 1

WEI to the denominator of both quote calculations. This will result in a

negligible loss for regular users but will effectively prevent attacks that

severely imbalance the pool.

Additionally, it has been observed that the LP fee does not function as

intended under extreme circumstances. Instead of reducing the inputPE by

1%, it would be more effective to reduce the output PSM by 1% in

quoteBuyPortalEnergy().

Lastly, it is recommended to increase the LP_PROTECTION_HURDLE from 1%

to 2% or 3%. This would provide a stronger safeguard against potential attacks

and further protect the liquidity pool.

Resolution: The Finding was fixed in commit a4e7509.

LP_PROTECTION_HURDLE has been increased to 2%, the calculation for the

protection is now happening at the end of the quoteBuyPortalEnergy()

function and a �1 has been added to the denominator of both quote

calculations.

Evidences

Arbitrage scenario

Reproduce:
Variables for the quoteBuyPortalEnergy() function:

constant product: 2,5e25

reserve0� 3e19

reserve1� 833333

PSM Input: 1e23

PSM after lp protection hurdle calculation: 9,9e22

PE received: 833080

Variables for the quoteSellPortalEnergy() function:

constant product: 2,5e25

reserve0� 1,0003e23

reserve1� 249

input PE� 833080

Output PSM� 1,000001108805766e23

Results:
The attacker received 0.110880576600000000 PSM more than he put in.

10

F-2024-2252 - Missing registered portals validation - Low

Description: The functions collectProfitOfPortal and increaseAllowanceVault

should only be allowed to call for existing portals. However, these functions

currently lack validation for the existence of portals.

Assets:
VirtualLP.sol [https://github.com/PossumLabsCrypto/PortalsV2�

Status: Fixed

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 3

Exploitability �0�2�� 0

Complexity �0�2�� 0

Final Score: 2.5 (Low)

Severity: Low

Recommendations

Remediation: The functions should start with a check to verify if the called portal is

registered.

Resolution: The Finding was fixed in commit a4e7509.

The functions are verifying that the portals are registered.

11

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/a53f2719-3a47-4987-92f2-ad9b7e02bed3

F-2024-2256 - Impossible to mint token with ID equals 0 - Low

Description: In the mint() function of the PortalNFT.sol contract, the totalSupply of

tokens increases at the beginning of the function. Meaning that there won't be

a token with an Id of 0. If the tokenId is incremented before minting, the very

first tokenId will be unserviceable, and tokenId 0 won't be accessible. This

poses a risk of compatibility issues with third-party services, that may rely on

tokens with zero ID.

function mint(

....

) external onlyOwner returns (uint256 nftID) {

totalSupply++;

_safeMint(_recipient, totalSupply);

_setTokenURI(totalSupply, metadataURI);

Status: Fixed

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 3

Exploitability �0�2�� 0

Complexity �0�2�� 0

Final Score: 2.5 (Low)

Severity: Low

Recommendations

Remediation: It is considered best practice to increment the tokenId after minting.

Alternatively, the documentation should be updated to explain why the

tokenId is increased before minting.

Resolution: The Finding was fixed in commit a4e7509.

TokenID of 0 is now mintable.

12

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/bb969bdd-d8d1-4ffc-a9ed-a0b0e6a5f3d0

Observation Details

F-2024-2251 - Missing events emi�ing for important functions - Info

Description: Events for critical state changes should be emitted for tracking actions off-

chain. It was observed that events in VirtualLP.sol, PortalNFT.sol are

missing in the following functions:

withdrawFromYieldSource()

depositToYieldSource()

mint()

redeem()

Events are crucial for tracking changes on the blockchain, especially for

actions that alter significant contract states or permissions. The absence of

events in these functions means that external entities, such as user interfaces

or off-chain monitoring systems, cannot effectively track these important

changes.

Assets:
PortalNFT.sol [https://github.com/PossumLabsCrypto/PortalsV2�

PortalV2MultiAsset.sol [https://github.com/PossumLabsCrypto/PortalsV2�

Status: Mitigated

Recommendations

Remediation: To improve the transparency and traceability of these functions, consider

emitting an event after each state modification.

Resolution: The Finding was mitigated in commit a4e7509.

Client Comment: “The mentioned 4 functions that don´t emit events can only

be called by higher level functions that emit events. In interest of saving gas

and byte-size, we won´t add events where they seem redundant.”

13

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/d8619f56-e75a-4d1d-9552-758047ab68e0

F-2024-2357 - Floating Point Precision by Rounding Error - Info

Description: In both withdrawFunding(), getBurnValuePSM(),

quoteBuyPortalEnergy() functions, there's a small rounding error. It arises

from the calculation performed, leading to the inadvertent deletion of the last

wei.

// line 549

uint256 withdrawAmount = (_amountBtoken * 100) / FUNDING_MAX_RETURN_PER

CENT;

// line 573

uint256 minValue = (_amount * 100) / FUNDING_MAX_RETURN_PERCENT;

// line 681

_amountInputPSM = (_amountInputPSM * (100 - LP_PROTECTION_HURDLE)) / 10

0;

This vulnerability emerges when Solidity's 256-bit precision is inadequate to

accurately represent certain numbers with fractional components. As a result,

arithmetic operations involving such numbers can lead to rounding errors,

yielding inaccurate results. This vulnerability can compromise the reliability

and accuracy of some of the contract's calculations.

Assets:
VirtualLP.sol [https://github.com/PossumLabsCrypto/PortalsV2�

Status: Accepted

Recommendations

Remediation: Consider adopting fixed-point arithmetic for decimal calculations. Utilizing

libraries that support fixed-point arithmetic can enhance predictability and

precision, surpassing the capabilities of floating-point arithmetic.

Resolution: The Finding was mitigated in commit a4e7509.

Client Comment: “The precision loss of the last digit in the mentioned

functions isn´t noticable in any economic reality. We prefer to keep the code

simple with less libraries and mathematical operations over avoiding negligible

precision loss.”

14

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/06d90ece-ce9f-40b9-a484-deaa6ea9256d

F-2024-2359 - Use private rather than public for constants - Info

Description: In Solidity, constants represent immutable values that cannot be changed

after they are set at compile-time. By default, constants have internal visibility,

meaning they can be accessed within the contract they are declared in and in

derived contracts. If a constant is explicitly declared as public, Solidity

automatically generates a getter function for it. While this might seem

harmless, it actually incurs a gas overhead, especially when the contract is

deployed, as the EVM needs to generate bytecode for that getter. Conversely,

declaring constants as private ensures that no additional getter is

generated, optimizing gas usage.

VirtualLP.sol:

uint256 constant SECONDS_PER_YEAR = 31536000; // seconds in a 365 day y

ear

uint256 constant MAX_UINT = 1157920892373161954235709850086879078532699

84665640564039457584007913129639935;

uint256 public constant FUNDING_APR = 48; // annual redemption value in

crease (APR) of bTokens

uint256 public constant FUNDING_MAX_RETURN_PERCENT = 1000; // maximum r

edemption value percent of bTokens (must be >100)

uint256 public constant FUNDING_REWARD_SHARE = 10; // 10% of yield goes

to the funding pool until funders are paid back

address constant WETH_ADDRESS = 0x82aF49447D8a07e3bd95BD0d56f35241523fB

ab1;address constant PSM_ADDRESS = 0x17A8541B82BF67e10B0874284b4Ae66858

cb1fd5; // address of PSM token

address constant USDCE_WATER = 0x806e8538FC05774Ea83d9428F778E423F64924

75;

address constant USDC_WATER = 0x9045ae36f963b7184861BDce205ea8B08913B48

c;

address constant ARB_WATER = 0x175995159ca4F833794C88f7873B3e7fB12Bb1b6

;

address constant WBTC_WATER = 0x4e9e41Bbf099fE0ef960017861d181a9aF6DDa0

7;

address constant WETH_WATER = 0x8A98929750e6709Af765F976c6bddb5BfFE6C06

c;

address constant LINK_WATER = 0xFF614Dd6fC857e4daDa196d75DaC51D522a2ccf

7;

PortalV2MultiAsset.sol:

address constant WETH_ADDRESS = 0x82aF49447D8a07e3bd95BD0d56f35241523fB

ab1;

address constant PSM_ADDRESS = 0x17A8541B82BF67e10B0874284b4Ae66858cb1f

d5; // address of PSM token

uint256 constant TERMINAL_MAX_LOCK_DURATION = 157680000; // terminal ma

ximum lock duration of a user stake in seconds (5y)

uint256 constant SECONDS_PER_YEAR = 31536000; // seconds in a 365 day y

ear

uint256 public constant LP_PROTECTION_HURDLE = 1; // percent reduction

of output amount when minting or buying PE

Assets:
PortalV2MultiAsset.sol [https://github.com/PossumLabsCrypto/PortalsV2�

VirtualLP.sol [https://github.com/PossumLabsCrypto/PortalsV2�

Status: Fixed

Recommendations

15

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/d3b00aaf-ff58-4b5a-9d3d-5ea66cf7d48e

Remediation: To optimize gas usage in your Solidity contracts, declare constants with

private visibility rather than public when possible. Using private prevents

the automatic generation of a getter function, reducing gas overhead,

especially during contract deployment.

16

F-2024-2363 - Missing validation before division - Info

Description: The quoteBuyPortalEnergy function conducts a division involving the

reserve0 variable, but lacks a mechanism to ensure that reserve0 is not 0,

which could lead to a division by zero error.

uint256 reserve0 = IERC20(PSM_ADDRESS).balanceOf(VIRTUAL_LP) - virtualL

P.fundingRewardPool();

// line 677

uint256 reserve1 = CONSTANT_PRODUCT / reserve0;

Within the context of Solidity, division by zero presents a critical concern due

to its potential to trigger an exception, thereby abruptly terminating the

execution of the smart contract. This abrupt halting of contract execution

carries significant repercussions, including the potential loss of funds for users

engaged with the contract and the prospect of an entire contract failure.

Assets:
PortalV2MultiAsset.sol [https://github.com/PossumLabsCrypto/PortalsV2�

Status: Accepted

Recommendations

Remediation: Prior to performing any division operation, check whether the divisor is equal

to zero. If the divisor is zero, handle the situation with error handling

mechanisms to prevent exceptions. Use if-statements or require statements

to verify that the divisor is not equal to zero before attempting the division

operation.

Resolution: The Finding was fixed in commit a4e7509.

Client Comment: “Cannot follow the recommendation because it kicks the

contract above the byte-limit.

In practice, this will never cause a problem because the x*y=k formula will

ensure that there is always some amount of PSM in the contract after swaps

(reserve0�.”

17

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/dc069c79-e097-46c7-af7b-35581eca8af1

F-2024-2365 - Documentation mismatch - Info

Description: As per the documentation, the constant _FUNDING_PHASE_DURATION should

be set to 604800 (which equals 7 days). Consequently, the VirtualLP

constructor contains an if statement to ensure that the constant value falls

within the range of 3 to 30 days.

if (

_FUNDING_PHASE_DURATION < 259200 || _FUNDING_PHASE_DURATION > 2592000

)

This discrepancy between the documentation and the contract's code leads

to confusion and potential misunderstandings about the contract's behavior

and capabilities.

Status: Mitigated

Recommendations

Remediation: Review the documentation and update the implementation to match the

expected result.

Resolution: The Finding was fixed in commit a4e7509.

Client Comment: “To clarify, the specific implemetation in our release will have

a 7 day funding phase duration which will be given as input in the constructor,

but the contract allows for a more generic range of 3 and 30 days that will suit

any reasonable use case. I don´t see a fundamental mismatch here since the

chosen duration of the implemention is a subset of the generic range.”

18

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/c86be1c6-5d89-477f-b97a-dfcbda96dd99

F-2024-2454 - Unchecked return value from transfer functions - Info

Description: The stake(), buyPortalEnergy(), PSM_sendToPortalUser(),

convert(), contributeFunding(), withdrawFunding(),

burnBtokens() functions currently lack a step in its implementation by not

verifying the return value of the call to the transferFrom() and transfer()

functions.

If the return value indicates an error condition, the absence of validation might

lead to unintended consequences, including the completion of a transaction

despite the presence of errors.

Assets:
PortalV2MultiAsset.sol [https://github.com/PossumLabsCrypto/PortalsV2�

VirtualLP.sol [https://github.com/PossumLabsCrypto/PortalsV2�

Status: Accepted

Recommendations

Remediation: It's recommended to use the safeTransferFrom() and safeTransfer()

method from the SafeERC20 and SafeERC721 libraries, which automatically

checks the return value and reverts on failure.

Resolution: The Finding was fixed in commit a4e7509.

Client Comment: “Plain "transfer" that doesn´t check return values is only

used in functions that interact with tokens with a known, standard ERC20

behaviour �PE tokens, bTokens, PSM�. These will cause a revert of the entire

function call if the transfer fails, which to my knowledge makes the check of

the return value irrelevant.”

19

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/b1731336-c5d9-4e11-8dcd-63002e995439

F-2024-2455 - Missing checks for the zero address - Info

Description: In Solidity, the Ethereum address

0x00 is known as the "zero

address". This address has significance because it is the default value for

uninitialized address variables and is often used to represent an invalid or

non-existent address. The "

Missing zero address control" issue arises when a Solidity smart contract does

not properly check or prevent interactions with the zero address, leading to

unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

Missing checks were observed in the following contracts:

./VitrualLP.sol: registerPortal()

Assets:
VirtualLP.sol [https://github.com/PossumLabsCrypto/PortalsV2�

Status: Accepted

Recommendations

Remediation: It is strongly recommended to implement checks to prevent the zero address

from being set during the initialization of contracts. This can be achieved by

adding require statements that ensure address parameters are not the zero

address.

Resolution: The Finding was fixed in commit a4e7509.

Client Comment: “The zero checks seem redundant so they are left out.

Reasoning:

Successfully registering address(0) as portal has no effect since this

address cannot call functions on the LP contract

_asset has a scenario where the address(0) is a valid input (when native

ETH is the principal token)

Address(0) is the default value of the mapping vaults[__portal][__asset].

Being able to set the mapping to the default value doesn´t cause a

concern. The greater concern is to insert a wrong address which cannot

be checked by an on-chain check, unless all addresses are hardcoded

from the start, which is not possible because the vLP is deployed before

the Portals.”

20

https://portal.hacken.io/App/Projects/Details/85100b1c-136e-4fb7-b621-9b9c15633c31/Finding/e0493cd3-7b3d-475e-bec7-eeb129624a55

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report �Source Code); the Source Code compilation, deployment, and

functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of

the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility and

safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note

that you should not rely on this report only — we recommend proceeding with several independent audits

and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to hacks.

Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

21

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user

funds or contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more

limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot

lead to asset loss. Contradictions and requirements violations. Major deviations from best

practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality

score.

22

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/PossumLabsCrypto/PortalsV2

Commit a4e7509a39c4d746024961e8ee230e7c42806aaf

Whitepaper -

Requirements https://github.com/PossumLabsCrypto/PortalsV2/tree/main/docs

Technical Requirements https://github.com/PossumLabsCrypto/PortalsV2/tree/main/docs

Contracts in Scope

MintBurnToken.sol

PortalNFT.sol

PortalV2MultiAsset.sol

VirtualLP.sol

interfaces/IPortalV2MultiAsset.sol

interfaces/IVirtualLP.sol

23

https://github.com/PossumLabsCrypto/PortalsV2
https://github.com/PossumLabsCrypto/PortalsV2/tree/main/docs
https://github.com/PossumLabsCrypto/PortalsV2/tree/main/docs

