
Snap Code Review And

Security Analysis Report

Customer: Multiverse X

Date: 29/05/2024

We express our gratitude to the Multiverse X team for the collaborative engagement that enabled the

execution of this Security Assessment.

MultiversX is a highly scalable, decentralized blockchain network designed for next-generation

applications. It leverages adaptive state sharding and a secure proof-of-stake consensus mechanism

to provide an efficient, scalable, and secure blockchain platform.

Language: TypeScript, JavaScript

Tags: [Snap]

Timeline: 14/05/2024 - 17/05/2024

Review Scope

Repository https://github.com/hknio/mx-metamask-snaps-d05bcac3ec10375973da6/

Commit 992c22e

2

https://github.com/hknio/mx-metamask-snaps-d05bcac3ec10375973da6/

Audit Summary

10/10 n/a n/a n/a
Security score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

4 4 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 1

Low 1

Vulnerability Status

F-2024-2697 - Dependency Vulnerabilities Fixed

F-2024-2701 - Potential for Exposing Sensitive Data Fixed

F-2024-2702 - Insecure Compiler Flags Fixed

F-2024-2832 - Insecure Handling of Private Keys Fixed

3

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/cef17305-0d01-45ec-86c0-2f9468b2dff7
https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/83a84893-6c94-4a64-9f62-b7588b6b3e09
https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/281e54db-8a1d-49ac-a636-45a1280902b8
https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/df38c6a9-4dba-46b4-a82b-fc36eec9f5d1

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Snap Code Review and Security Analysis Report for Multiverse X

Audited By Stephen Ajayi

Approved By Stephen Ajayi

Website https://multiversx.com

Changelog 17/05/2024 - Preliminary Report

4

https://multiversx.com/

Table of Contents

System Overview 6

Executive Summary 7

Security Score 7

Summary 7

Findings 8

Vulnerability Details 8

F-2024-2832 - Insecure Handling Of Private Keys - Medium 8

F-2024-2702 - Insecure Compiler Flags - Low 10

F-2024-2697 - Dependency Vulnerabilities - Info 12

F-2024-2701 - Potential For Exposing Sensitive Data - Info 14

Observation Details 16

F-2024-2830 - Floating Point Precision And Rounding Errors - Info 16

F-2024-2835 - Lack Of Secure Transmission In API Calls - Info 18

F-2024-2836 - Insufficient Error Handling And Potential Data Leakage - Info 20

F-2024-2991 - Caret Range Versioning Vulnerability In Dependency Management - Info 22

F-2024-2995 - Missing Author Information In Package Metadata - Info 24

Disclaimers 26

Hacken Disclaimer 26

Technical Disclaimer 26

Appendix 1. Severity Definitions 27

Appendix 2. Scope 28

System Overview

MultiversX, previously known as Elrond, is a highly scalable, decentralized blockchain network

designed for next-generation applications. It leverages adaptive state sharding and a secure proof-of-

stake consensus mechanism to provide an efficient, scalable, and secure blockchain platform.

MultiversX is built to support a wide variety of blockchain protocols beyond Ethereum, enabling

robust and versatile decentralized applications (dApps).

Audit Focus: MetaMask Snap

The audit conducted on the MultiversX MetaMask Snap focused on the permissions and security of

the Snap's functionalities.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's Snap project.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 1 low severity issues.

Out of these, 4 issues have been addressed and resolved, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's Snap yields an overall score of 10. This score reflects the

combined evaluation of the security aspects of the project.

7

Findings

Vulnerability Details

F-2024-2832 - Insecure Handling of Private Keys - Medium

Description: The function getAddress uses getWalletKeys to retrieve the user's

public key. The underlying getWalletKeys function potentially exposes

private keys which can compromise user security by allowing

unauthorized access to cryptographic material.

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Classification

CVSS 4.0: 6.3 (/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:L)

Known Vulnerability

(CVE): CWE-934 | OWASP Top Ten 2013 Category A6 - Sensitive Data

Exposure

Severity: Medium

Recommendations

Remediation:
Refactor any function that currently exposes or could expose private

keys to only handle or return public keys or addresses.

Modify all cryptographic functions to never output private key

material. Use secure scopes and environments for handling private

keys.

Sample Fix:

Modify getWalletKeys to ensure no private keys are returned or

exposed through the interface.

// Updated getWalletKeys function to never expose private keys.

export const getWalletKeys = async () => {

// Existing secure implementation details...

const publicKey = userSecret.generatePublicKey().toAddress().bech32(

);

8

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/df38c6a9-4dba-46b4-a82b-fc36eec9f5d1
https://cwe.mitre.org/data/definitions/934.html

return { publicKey };

};

Resolution: The getWalletKeys was modified to ensure no private keys were

exposed

import { KeyOps } from "./operations/KeyOps";

/**

* This wallet uses a single account/address.

*/

export const getAddress = async (): Promise<string> => {

const keyOps = new KeyOps();

return await keyOps.getPublicKey();

};

Evidences

Proof of Concept (PoC):

Location: src/getAddress.ts, src/private-key.ts

Reproduce:
The function getWalletKeys returns an object containing the

privateKey directly:

export const getAddress = async (): Promise<string> => {

const { publicKey } = await getWalletKeys();

return publicKey;

};

Also verify that the getWalletKeys function should exposes sensitive

cryptographic keys by returning private keys within the function's output.

return {

privateKey: node.privateKeyBytes,

publicKey: userSecret.generatePublicKey().toAddress().bech32(),

userSecret: userSecret,

};

9

F-2024-2702 - Insecure Compiler Flags - Low

Description: The setting "noImplicitAny": false in the TypeScript compiler

options allows implicit 'any' types. This reduces the type-safety of the

code, potentially leading to runtime errors that are not caught at compile

time, which could be exploited if they lead to unpredictable application

behavior.

The compiler option "sourceMap": true is enabled, which can lead to

the generation and exposure of source map files. These files can

inadvertently reveal source code logic and structure in a production

environment, aiding attackers in understanding and exploiting the

application.

The "skipLibCheck": true option bypasses type checking of

declaration files (.d.ts). While this can improve compilation times, it also

means that incorrect or malicious type declarations in third-party libraries

could go unchecked.

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Classification

CVSS 4.0: 2.3 (/AV:N/AC:H/AT:N/PR:L/UI:N/VC:N/VI:L/VA:N/SC:N/SI:N/SA:N)

Severity: Low

Recommendations

Remediation:
Review and enable TypeScript's strict mode options, such as

strictNullChecks, strictBindCallApply, and

strictFunctionTypes, to ensure robust type-checking and reduce

runtime errors.

Configure build pipelines to handle different environments

(development vs. production) appropriately. Exclude source maps and

any non-essential files from production deployments

Sample Fix:

Enable strict type checks by setting "noImplicitAny": true to enforce

type safety throughout the codebase.

10

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/281e54db-8a1d-49ac-a636-45a1280902b8

"noImplicitAny": true,

Ensure that source maps are not included in production builds. This can

be controlled by conditional configurations or build scripts that disable

source map generation for production.

"sourceMap": process.env.NODE_ENV === 'production' ? false : true,

Consider disabling this option, especially in larger projects where reliability

and security are paramount, to ensure all library types are validated.

"skipLibCheck": false,

Resolution:
"noImplicitAny": true,

"sourceMap": false,

"skipLibCheck": false

Evidences

Proof of Concept (PoC):

Location: tsconfig.json

Reproduce:
"noImplicitAny": false,

"sourceMap": true,

"skipLibCheck": true,

11

F-2024-2697 - Dependency Vulnerabilities - Info

Description: Vulnerabilities in dependencies can expose your application to security

risks. The versions specified in dependencies and devDependencies

might contain known vulnerabilities that have been fixed in later releases

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Classification

Severity: Info

Recommendations

Remediation:
Automate dependency updates using tools like Dependabot or

Renovate.

Regularly run npm audit or similar tools to check for vulnerabilities

and apply patches or updates promptly.

Sample Fix:

Utilize tools like npm audit to identify and mitigate vulnerabilities in the

dependencies.

npm update

npm audit fix

Resolution:
"dependencies": {

"@multiversx/sdk-core": "13.1.0",

"protobufjs": "7.3.0"

},

Evidences

Proof of Concept (PoC):

Location: package.json

Reproduce:
Dependencies like "@multiversx/sdk-core": "^12.18.0" and others

might have known vulnerabilities in the used versions.

12

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/cef17305-0d01-45ec-86c0-2f9468b2dff7

npm audit

npm audit report

protobufjs 7.0.0 - 7.2.4

Severity: critical

protobufjs Prototype Pollution vulnerability - https://github.com/ad

visories/GHSA-h755-8qp9-cq85

fix available via `npm audit fix --force`

Will install @multiversx/sdk-core@13.1.0, which is a breaking change

node_modules/protobufjs

@multiversx/sdk-core 12.5.0 - 13.0.0-beta.18

Depends on vulnerable versions of protobufjs

node_modules/@multiversx/sdk-core

2 critical severity vulnerabilities

13

F-2024-2701 - Potential for Exposing Sensitive Data - Info

Description: Update the snap.manifest.json to include a comprehensive, clear

description of why the snap_getBip32Entropy permission is necessary,

detailing the risks and benefits. This ensures transparency and helps

users make informed decisions.

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Classification

Severity: Info

Recommendations

Remediation: Each time the Snap attempts to access this permission, prompt the user

with a detailed consent form that must be actively approved. This form

should clarify what the action involves and the potential risks.

Sample Fix:

Enhance the snap.manifest.json to include detailed descriptions of

each permission. This should include why each permission is needed and

the security.

"permissions": {

"snap_getBip32Entropy": {

"description": "This permission allows MultiversX Snap to manage acc

ounts and assets on various blockchain networks by deriving keys fro

m your secret recovery phrase. You Secrets are safe and not revealed

."

{

"path": [

..................

]

}"

Evidences

Proof of Concept (PoC):

Location: snap.manifest.json

Reproduce:

14

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/83a84893-6c94-4a64-9f62-b7588b6b3e09

As stated in the manifest, the permission allows access to a specific

BIP32 derivation path which might be linked to wallet seed generation.

"snap_getBip32Entropy": [

{

"path": [

"m",

"44'",

"508'",

"0'",

"0'",

"0'"

],

"curve": "ed25519"

}

]

},

15

Observation Details

F-2024-2830 - Floating Point Precision and Rounding Errors - Info

Description: The function format takes a large numerical string (big), a denomination

(denomination), and a number of decimal places (decimals) to format

the number into a human-readable form with a specific precision. Due to

the manipulation of numeric values as strings and the method of inserting

a decimal point, there is a potential for precision and rounding errors.

These can result in incorrect calculations or representations, which is

particularly problematic in financial applications where accuracy is crucial.

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Recommendations

Remediation:
Use Libraries for Decimal Calculations: Replace custom string

manipulation for numeric operations with libraries like bignumber.js

or decimal.js to handle numbers safely and more accurately.

Avoid Reinventing the Wheel: Rely on established solutions for

handling financial calculations, which are more likely to have resolved

common and obscure issues through community vetting.

Sample Fix:

To address precision and rounding issues, consider using a well-tested

library like bignumber.js or decimal.js that is designed to handle

arbitrary-precision decimal numbers and avoids common pitfalls of

floating-point arithmetic:

import BigNumber from 'bignumber.js';

function format(big: string, denomination: number, decimals: number)

{

const number = new BigNumber(big);

const shifted = number.shiftedBy(-denomination);

return shifted.toFixed(decimals);

}

Resolution: This fixed function checks if the input string is an integer and, if

positiveNumbersOnly is true, ensures it is non-negative.

import BigNumber from 'bignumber.js';

export const stringIsInteger = (

16

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/29fec8c9-4fd6-442c-9278-df2e9693a3e8

integer: string,

positiveNumbersOnly = true

) => {

const stringInteger = String(integer);

if (!stringInteger.match(/^[-]?\d+$/)) {

return false;

}

const bNparsed = new BigNumber(stringInteger);

const limit = positiveNumbersOnly ? 0 : -1;

return (

bNparsed.toString(10) === stringInteger && bNparsed.comparedTo(0) >=

limit

);

};

Evidences

Proof of Concept (PoC):

Location: src/denominate.ts

Reproduce:
In the format function, the handling of numbers as strings and manual

insertion of decimal points without adequate consideration of floating-

point arithmetic can lead to inaccuracies:

function format(big: string, denomination: number, decimals: number)

{

let array = big.toString().split('');

// Additional code for negative check and string manipulation

array.splice(array.length - denomination, 0, '.');

// Trimming and formatting logic

}

17

F-2024-2835 - Lack of Secure Transmission in API Calls - Info

Description: The function getNetworkConfig uses the fetch API to retrieve network

configuration from a server without explicitly ensuring the use of secure

protocols (HTTPS). This could potentially allow sensitive data to be

transmitted over insecure channels, making it susceptible to interception

or manipulation.

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Recommendations

Remediation:
Enforce HTTPS: Always use HTTPS for all external network calls to

ensure encrypted transmissions.

URL Validation: Implement rigorous validation of URLs to ensure they

are secure and conform to expected formats and protocols.

Sample Fix:

Ensure that all API calls are made over HTTPS and consider implementing

checks to verify the security of the protocol used in the URL.

export const getNetworkConfig = async (apiUrl: string): Promise<Netw

orkConfig | undefined> => {

if (!apiUrl.startsWith('https://')) {

throw new Error('Insecure connection protocol');

}

const response = await fetch(`${apiUrl}/network/config`);

...

};

Resolution:
export const getNetworkConfig = async (

apiUrl: string,

): Promise<NetworkConfig | undefined> => {

if (!apiUrl.startsWith('https://')) {

throw new Error('Insecure connection protocol');

}

try {

const response = await fetch(`${apiUrl}/network/config`);

Evidences

Proof of Concept (PoC):

18

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/29ea4684-d053-4638-855f-22cb653b5d5d

Location: src/network.ts

Reproduce:
If the API calls are intercepted due to the use of an insecure connection

(HTTP), sensitive data could be exposed or tampered with, which might

lead to broader security implications for the network operations.

export const getNetworkConfig = async (apiUrl: string): Promise<Netw

orkConfig | undefined> => {

const response = await fetch(`${apiUrl}/network/config`);

...

};

19

F-2024-2836 - Insufficient Error Handling and Potential Data

Leakage - Info

Description: The function getNetworkConfig catches errors broadly and returns

undefined on any failure. This generic error handling could obscure the

underlying cause of issues, potentially making debugging difficult and

could inadvertently leak information through error messages.

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Recommendations

Remediation:
Structured Error Handling: Use structured error handling to provide

more detailed internal diagnostics and avoid returning or logging any

information that might help an attacker.

Logging and Monitoring: Implement comprehensive logging for errors

and monitor these logs to detect and respond to issues promptly.

Sample Fix:

Improve error handling to differentiate between types of errors and handle

each appropriately. Log errors internally but avoid sending detailed error

messages that might expose sensitive data.

catch (error) {

console.error('Failed to fetch network config:', error);

throw new Error('Network configuration retrieval failed');

}

Resolution:
catch (error) {

throw new Error('Failed to fetch network config');

}

Evidences

Proof of Concept (PoC):

Location: src/network.ts

Reproduce:

20

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/10571161-8f18-42b0-82f7-7f9187e77497

Poor error handling can lead to difficulties in maintaining security over

time due to the inability to properly diagnose issues.

catch (error) {

return undefined;

}

21

F-2024-2991 - Caret Range Versioning Vulnerability in Dependency

Management - Info

Description: The use of the caret (^) in versioning within the package.json file can

introduce a risk of automatically upgrading to newer minor versions of

dependencies that might include non-backward compatible changes or

newly introduced vulnerabilities without thorough testing. This can lead to

unexpected application behavior or security risks.

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Recommendations

Remediation: Pin dependency versions to avoid unexpected updates that could

introduce vulnerabilities.

Sample Fix:

To mitigate this issue, you can pin the dependency versions by removing

the caret (^). This ensures that only the specified versions are used, thus

avoiding unexpected updates. Modify the package.json as follows:

"dependencies": {

"@multiversx/sdk-core": "12.18.0",

"@multiversx/sdk-network-providers": "2.2.1",

"@multiversx/sdk-wallet": "4.3.0",

"buffer": "6.0.3"

}

Resolution:
"dependencies": {

"@multiversx/sdk-core": "13.1.0",

"@multiversx/sdk-network-providers": "2.2.1",

"@multiversx/sdk-wallet": "4.3.0",

"bignumber.js": "^9.1.2",

"buffer": "6.0.3",

"protobufjs": "7.3.0"

}

Evidences

Proof of Concept (PoC):

Location: package.json

22

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/26b46e3b-7a9b-439a-adad-f712fb2517eb

Reproduce:
Consider the dependency "@multiversx/sdk-core": "^12.18.0" in

the provided **package.json**. This configuration allows npm to install

any version of @multiversx/sdk-core that is greater than or equal to

12.18.0 but less than 13.0.0. If a new version 12.18.1 is released and

contains a critical vulnerability or non-backward compatible changes, it

will automatically be included in builds due to the caret range. This could

compromise the security or functionality of the application without the

developers' direct knowledge.

23

F-2024-2995 - Missing Author Information in Package Metadata -

Info

Description: The absence of an author field in the package.json file of a Node.js

package can lead to issues related to credibility, accountability, and

traceability. While not a security vulnerability in the traditional sense,

missing author information can decrease the transparency and

trustworthiness of a package, particularly in public repositories where

users evaluate the reliability and support of a package based on its

metadata.

Assets:
Metamask Snap [https://github.com/hknio/mx-metamask-snaps-

d05bcac3ec10375973da6/]

Status: Fixed

Recommendations

Remediation: It is recommended to always include at least minimal contact information

in the package metadata to enhance the credibility and trustworthiness of

the package. Regular audits of package metadata should be conducted as

part of the software development lifecycle to ensure that all necessary

fields are accurately populated and up-to-date

Sample Fix:

To address this, populate the author field in the package.json file with

relevant details. The author field can include a name, email, and url. Here

is an example of how to structure it:

"author": {

"name": "Ben Dan",

"email": "Ben@hacken.io", //Optional

"url": "https://www.hacken.io"

}

Resolution:
"author": {

"name": "MultiversX",

"email": "extensions@multiversx.com",

"url": "https://multiversx.com"

},

Evidences

Proof of Concept (PoC):

24

https://portal.hacken.io/App/Projects/Details/c3f097a3-678f-4ecb-9db3-7152443f363d/Finding/1d2d8013-fbbb-465f-8a45-97865bf3c4c1

Location: package.json

Reproduce:
In the provided package.json for the package

@multiversx/metamask-snap, the author field is observed to be

empty:

"author": ""

25

Disclaimers

Hacken Disclaimer

The application given for audit has been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in the application's source code, its

deployment, and functionality (performing the intended functions) being the focus of our analysis.

The report contains no statements or warranties regarding the identification of all vulnerabilities or

the absolute security of the code. The report covers only the code that was submitted and reviewed,

and therefore may not remain relevant after any modifications have been made. This report should

not be considered a definitive or exhaustive assessment of the utility, safety, or bug-free status of the

application, nor should it be taken as a guarantee of the absence of other potential issues.

While we have exerted our best efforts in conducting the analysis and producing this report, it is

crucial to understand that this report should not be the sole source of reliance for ensuring the

security of the application. We strongly recommend undertaking multiple independent audits and

establishing a public bug bounty program to enhance the security posture of the application.

English is the original language of this report. The Consultant is not liable for any errors or omissions

in any translations of this report.

Technical Disclaimer

Applications, whether decentralized apps (DApps) or other types of applications, are deployed and

run within specific environments that may include various platforms, programming languages, and

other related software components. These environments and components can have inherent

vulnerabilities that might lead to security breaches. Consequently, the Consultant cannot guarantee

the absolute security of the audited application.

26

Appendix 1. Severity Definitions

Severity Description

Critical

These issues present a major security vulnerability that poses a severe risk to the system.

They require immediate attention and must be resolved to prevent a potential security

breach or other significant harm.

High

These issues present a significant risk to the system, but may not require immediate

attention. They should be addressed in a timely manner to reduce the risk of the potential

security breach.

Medium

These issues present a moderate risk to the system and cannot have a great impact on

its function. They should be addressed in a reasonable time frame, but may not require

immediate attention.

Low

These issues present no risk to the system and typically relate to the code quality

problems or general recommendations. They do not require immediate attention and

should be viewed as a minor recommendation.

27

Appendix 2. Scope

The scope of the project includes the provided repository:

Scope Details

Repository https://github.com/multiversx/mx-metamask-snaps

Commit 992c22e

Npm Package https://www.npmjs.com/package/@multiversx/metamask-snap

Requirements

Technical Requirements

28

https://github.com/multiversx/mx-metamask-snaps
https://www.npmjs.com/package/@multiversx/metamask-snap

