
Smart Contract Code

Review And Security

Analysis Report

Customer: SpaceCatch

Date: 19/06/2024

We express our gratitude to the SpaceCatch team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

SpaceCatch is a GameFi project that is designed and developed by the professional gaming studio

PIXELFIELD.

Document

Name Smart Contract Code Review and Security Analysis Report for SpaceCatch

Audited By Turgay Arda Usman

Approved By Grzegorz Trawinski

Website https://whitepaper.spacecatch.io

Changelog 14/06/2024 - Preliminary Report

19/06/2024 - Final Report

Platform Ethereum Mainnet

Language Solidity

Tags Staking, Vesting, ERC20, Airdrop

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/development-at-pixelfield/spacecatch-smart-contracts

Commit fc5eba4a500a8bf621662ce2ce41a54bb2d5ec58

2

https://whitepaper.spacecatch.io/
https://hackenio.cc/sc_methodology
https://github.com/development-at-pixelfield/spacecatch-smart-contracts

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the report

4 2 1 1
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 1

Medium 0

Low 3

Vulnerability Status

F-2024-3931 - Lock Period is not Taken Into Account During Stake Claims Mitigated

F-2024-3929 - Airdrops Can Be Set For a Past Date Accepted

F-2024-3928 - Unchecked Transfer Fixed

F-2024-3930 - Recovery Functionality Only Works for Registered Token Type Fixed

Documentation quality

Functional requirements are partially provided.

Technical description is partially provided.

Code quality

The code mostly follows best practices and style guidelines.

See observations and low issues for more details.

The development environment is configured.

Test coverage

Code coverage of the project is 62.38% (branch coverage),

Deployment and basic user interactions are covered with tests.

Negative cases coverage is partially missed.

Interactions by several users are not tested thoroughly.

3

https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/d92812c6-2d45-4535-ba69-95839f4ea52b
https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/f06dfe07-110d-4ae7-9f72-f45fc40da11c
https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/021ca9af-1e92-4269-9275-8f960ce8d08c
https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/475b50cc-7df6-43a4-8501-d61ebf686ead

Table of Contents

System Overview 5

Privileged Roles 5

Risks 6

Findings 7

Vulnerability Details 7

Observation Details 16

Disclaimers 19

Appendix 1. Severity Definitions 20

Appendix 2. Scope 21

System Overview

SpaceCatch is a GameFi project that is designed and developed by the professional gaming studio

PIXELFIELD. It has the following contracts

CatchAirdrop — manages a phased distribution of $CATCH tokens to specified beneficiaries.

Catch — Simple ERC20 token It has the following attributes:

Name: Catch

Symbol: CATCH

Decimals: 18

Total supply: 100m tokens.

CatchStaking — Contains the staking logic.

CatchVesting — Contains the vesting logic.

BatchTransfer —This contract allows the owner to transfer tokens to multiple address in a single

transaction.

Privileged roles

The Vesting Operator can upload vesting schedules for a specific round and set claimed amounts

for the previous version integration.

The airdrop admin can set the token allocations for a list of beneficiaries and start the airdrop

season.

The staking admin can start the staking, recover tokens, and send back stakes to stakers in case

staking is cancelled.

The staking manager can set the earned rewards for initial stakers and add additional stakes for

the users.

The Vesting admin can recover stuck tokens.

5

Risks

Making external calls within loops increases the risk of gas exhaustion, potentially leading to

failed transactions and reduced contract reliability, especially when processing large datasets.

The project iterates over large dynamic arrays, which leads to excessive gas costs, risking denial

of service due to out-of-gas errors, directly impacting contract usability and reliability.

The token contract’s design allows for centralized control over the transfer process, posing a risk

of unauthorized token issuance, potentially diluting the token value and undermining trust in the

project's economic governance

The project does not support non-standard ERC20 tokens. Adding such tokens in the future can

cause additional risks.

The current version of the code does not support fee-on-transfer tokens. Adding such tokens in

the future can create risk

6

Findings

Vulnerability Details

F-2024-3931 - Lock Period is not Taken Into Account During Stake

Claims - High

Description: The project allows CATCH tokens to be staked. The staking has the

following features:

"Since we need to be able to set the staking contract with the

data from the old contract, the staking contract has been

modified to allow for this. The staking contract will be initiated

with the stakes already made in the old contract, and also data

about which staker claimed how much staking rewards. All the

contract will be set with the same start time as the old contracts,

so they will act as if they were the old contracts.

added functions setEarnedForInitialStakers() and

addInitialStakes() which will be used to set the staking

contract with the data from the old contract.

The startStaking() function now accepts argument uint256

startTimestamp which will be used to set the start time of the

staking contract. The start time will be set to the same time as

the old contract. Another argument uint256

_rewardIndexUpdatedAt in order to set up the reward

computation argument so that it continues from the point just

before the exploit of the old contract."

The staking logic contains a 90 days lock period where the staked amount

locked and cannot be claimed. However, the calculation of rewards does

not depend on the lock period. Instead, it calculates the entire earned

reward up to the point of claiming. Here is a detailed analysis of how this

works:

function claim()

 external

 nonReentrant

 stakingNotCanceled

 stakingStarted

 returns (uint256)

{

 _updateRewardIndex(block.timestamp);

 /// Compute the rewards earned by the staker between last time this function

 _updateRewards(msg.sender);

7

https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/d92812c6-2d45-4535-ba69-95839f4ea52b

 uint256 reward = earned[msg.sender];

 require(reward > 0, "No rewards available for claim");

 earned[msg.sender] = 0;

 catchToken.safeTransfer(msg.sender, reward);

 emit Claimed(msg.sender, reward);

 return reward;

}

The claim function calls

_updateRewardIndex(block.timestamp) to ensure the global

reward index is up-to-date with the current timestamp.

The _updateRewards function is then called, which calculates the

total rewards earned by the user up to the current timestamp. This

function sums up the rewards for all stakes of the user, regardless of

whether they are still locked or unlocked.

function _updateRewards(address account) private {

 uint256 _earned = earned[account];

 for (uint256 i = 0; i < stakes[account].length; i++) {

 _earned += _calculateRewardsForStake(account, i, rewardIndex);

 }

 addressRewardIndex[account] = rewardIndex;

 earned[account] = _earned;

}

The _calculateRewardsForStake function calculates the rewards

for each individual stake based on the difference between the current

reward index and the user's last updated reward index.

function _calculateRewardsForStake(

 address _address,

 uint256 stakeIndex,

 uint256 _rewardIndex

) private view returns (uint256) {

 /// If the stake is already withdrawn, return 0

 if (stakes[_address][stakeIndex].withdrawn == true) return 0;

 uint256 staked = stakes[_address][stakeIndex].amount;

 return

 (staked * (_rewardIndex - addressRewardIndex[_address])) /

8

 MULTIPLIER;

}

The current implementation does not differentiate between locked and

unlocked stakes when calculating rewards. This means:

Users can claim the entire earned reward at any time, including during

the lock period.

The amount claimed is based on the total rewards earned up to the

current timestamp, not the lock period status.

This setup might lead to users being able to claim the full reward even if

their stakes are still locked.

Assets:
StakingNew.sol [https://github.com/development-at-

pixelfield/spacecatch-smart-contracts]

Status: Mitigated

Classification

Impact: 4/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Severity: High

Recommendations

Remediation: Modify the reward calculation logic to account for the lock period.

Resolution: This is a well known flow and it is reported to be feature:

Being able to claim rewards even for locked stakes is correct

according to requirements of the project. Locked stake just

means that the stake cannot be unstaked for 90 days, but

rewards can be claimed even in this locked period.

Evidences

PoC

Reproduce:

9

At T0, Alice stakes 1000 tokens.

At T0 + 30 days, Bob stakes 2000 tokens.

At **T0 + 60 days**:

Alice has been staking for 60 days.

Bob has been staking for 30 days.

The rewards are distributed based on the total staked amount

(3000 tokens in total).

Suppose the reward index at this point is calculated and let's

assume the accumulated reward for simplicity is 600 tokens.

Claim Rewards at T0 + 60 days:

Alice decides to claim her rewards at T0 + 60 days

Alice's share: ⅓ , Bob's share: ⅔.

Total rewards accumulated at T0 + 60 days: 600 tokens.

Alice's rewards: 600 * ⅓. => 200 tokens

Bob's rewards: 600*⅔. ​=> 400 tokens.

Results:
In this scenario, Alice is able to claim her full reward amount (200 tokens)

at T0 + 60 days even though her stake is still locked for another 30

days.

10

F-2024-3928 - Unchecked Transfer - Low

Description: The BatchTransfer.sol contract use the transfer() and

transferFrom() functions of the ERC20 implementation of

OpenZeppelin. Not all IERC20 implementations revert when there is a

failure in transfer/transferFrom. The function signature has a

boolean return value and they indicate errors that way instead. By not

checking the return value, operations that should have marked as failed,

may potentially go through without actually making a payment.

function batchTransfer(

 address[] calldata recipients,

 uint256[] calldata amounts

) external onlyOwner {

 require(

 recipients.length == amounts.length,

 "Arrays must have the same length"

);

 for (uint256 i = 0; i < recipients.length; i++) {

 uint256 amount = amounts[i];

 address recipient = recipients[i];

 token.transferFrom(msg.sender, recipient, amount)

 }

}

function recoverTokens(uint256 amount) external onlyOwner {

 token.transfer(msg.sender, amount);

}

Status: Fixed

Classification

Impact: 3/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

11

https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/021ca9af-1e92-4269-9275-8f960ce8d08c

Recommendations

Remediation: Use the SafeERC20 library to interact with tokens safely.

Resolution: Fixed in commit 3415f36. The SafeERC20 library is utilized.

12

F-2024-3929 - Airdrops Can Be Set For a Past Date - Low

Description: The Airdrop.sol contract allows owners to distribute CATCH tokens via

airdrop. The startAirdrop() allows the owner to enable the airdrop

process by setting its timestamp.

function startAirdrop(

 uint256 _airdropStartTimestamp

) external onlyRole(DEFAULT_ADMIN_ROLE) {

 require(airdropStartTimestamp == 0, "Airdrop already started.");

 require(_airdropStartTimestamp > 0, "Invalid Airdrop start timestamp");

 require(

 totalAirdropAmount == TOTAL_AIRDROP_QUOTA,

 "Distributed amount mismatch."

);

 airdropStartTimestamp = _airdropStartTimestamp;

}

As it can be seen from the implementation, the code allows owners to

start an airdrop with a past date. This is due to the lack of checks applied

to the given timestamp. The code should check if a given timestamp is

newer than the current system epoch timestamp.

This can lead to unexpected behaviors and incorrect payments for the

system.

Assets:
Airdrop.sol [https://github.com/development-at-pixelfield/spacecatch-

smart-contracts]

Status: Accepted

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Implement date checks for the airdrop start times.

13

https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/f06dfe07-110d-4ae7-9f72-f45fc40da11c

Resolution: The client acknowledged the issue with the following statement:

This is intended functionality. The reason is that we need this

contract to have the same state as the old contract is being

replaced due to the aforementioned hack. So the airdrop start

time will be set to a past timestamp intentionally

14

F-2024-3930 - Recovery Functionality Only Works for Registered

Token Type - Low

Description: The BatchTransfer.sol contract aims to forward funds from the old

version of the project to the current version. It contains a recovery

functionality for the accidental token deposits.

function recoverTokens(uint256 amount) external onlyOwner {

 token.transfer(msg.sender, amount);

}

The recover() function can only return the registered ERC20 token to

owners. However, the contract allows all kind of ERC20 tokens to be sent.

This would mean the other tokens will be locked and cannot be returned

to their rightful owners.

Assets:
BatchTranfer.sol [https://github.com/development-at-

pixelfield/spacecatch-smart-contracts]

Status: Fixed

Classification

Impact: 2/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Accept the token address as a parameter.

Resolution: Fixed in commit 3415f36. The ERC20 token address is now a parameter.

15

https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/475b50cc-7df6-43a4-8501-d61ebf686ead

Observation Details

F-2024-3925 - Floating Pragma - Info

Description: The project uses floating pragma ^0.8.23;

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Assets:
Airdrop.sol [https://github.com/development-at-pixelfield/spacecatch-

smart-contracts]

BatchTranfer.sol [https://github.com/development-at-

pixelfield/spacecatch-smart-contracts]

Catch.sol [https://github.com/development-at-pixelfield/spacecatch-

smart-contracts]

StakingNew.sol [https://github.com/development-at-

pixelfield/spacecatch-smart-contracts]

Vesting.sol [https://github.com/development-at-pixelfield/spacecatch-

smart-contracts]

Status: Fixed

Recommendations

Remediation: Lock the pragma version and consider known bugs

(https://github.com/ethereum/solidity/releases) for the compiler version

that is chosen.

Resolution: Fixed in commit fdb302e. The Solidity version is locked to 0.8.23.

16

https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/aa7de72b-b757-454d-ba31-3df040c947e8
https://github.com/ethereum/solidity/releases

F-2024-3926 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x00 is known as the

“zero address”. This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address.

The "Missing zero address Validation" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, consider a contract that includes a function to change its

owner. This function is crucial, as it determines who has administrative

access. However, if this function lacks proper validation checks, it might

inadvertently permit the setting of the owner to the zero address.

Consequently, the administrative functions will become unusable.

Missing checks were observed in the following functions:

batchTransfer()

Assets:
BatchTranfer.sol [https://github.com/development-at-

pixelfield/spacecatch-smart-contracts]

Status: Accepted

Recommendations

Remediation: Implement zero address checks for the aforementioned functions.

Resolution: The client acknowledged the issue with the following statement:

We won't be including zero address validation to BatchTransfer in

order to keep gas costs low as possible.

17

https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/69fd4dd5-8475-4480-9d55-406f59046147

F-2024-3927 - Contract And File Name Mismatch - Info

Description: The project has the files with the names Airdrop.sol, StakingNew.sol

and Vesting.sol. These files' contract names, CatchStaking ,

CatchVesting, and CatchAirdrop do not match the file names .

This leads to the inability to run the project tests due to such

inconsistencies.

Assets:
Airdrop.sol [https://github.com/development-at-pixelfield/spacecatch-

smart-contracts]

StakingNew.sol [https://github.com/development-at-

pixelfield/spacecatch-smart-contracts]

Vesting.sol [https://github.com/development-at-pixelfield/spacecatch-

smart-contracts]

Status: Accepted

Recommendations

Remediation: It is recommended to update the smart contract names.

Resolution: The client acknowledged the issue with the following statement:

I don't want to change the file names now because there is

another audit in progress, and I don't want to complicate things

because they have their audit scope defined by the file names. Is

this issue limiting your ability to run tests

18

https://portal.hacken.io/App/Projects/Details/03ca23da-4aa2-45dd-885a-bb377b62c1c3/Finding/42c0601b-486c-445e-94c9-584f9a62abff

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

19

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

20

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/development-at-pixelfield/spacecatch-smart-contracts

Commit fc5eba4a500a8bf621662ce2ce41a54bb2d5ec58

Whitepaper https://whitepaper.spacecatch.io

Requirements Provided as files.

Technical Requirements Provided as files.

Contracts in Scope

Airdrop.sol

BatchTranfer.sol

Catch.sol

StakingNew.sol

Vesting.sol

21

https://github.com/development-at-pixelfield/spacecatch-smart-contracts
https://whitepaper.spacecatch.io/

