
We express our gratitude to the SDAO team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

SDAO is a staking platform that allows users to earn rewards based on the staked ERC20 token

deposit amount and the lock duration.

Platform: EVM

Language: Solidity

Tags: Staking, ERC20

Timeline: 15/04/2024 � 17/06/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/Singularity-DAO/staking-reward-contracts

Commit 827be52

https://hackenio.cc/sc_methodology
https://github.com/Singularity-DAO/staking-reward-contracts

Audit Summary

10/10 10/10 96.72% 8/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.7/10
The system users should acknowledge all the risks summed up in the risks section of the report

3 3 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 0

Medium 1

Low 1

Vulnerability Status

F�2024�1335 � Unlock Date Is Not Reset When The Entire Deposit Is Withdrawn Fixed

F�2024�1336 � Miscalculated deltaScore Allows Malicious Users Earning Rewards For Free Fixed

F�2024�1343 � Return Values Of transfer()/transferFrom() Not Checked Fixed

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/11f5d40b-132a-4173-936d-af6fe7362b76
https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/6deacebd-882e-4151-a830-c31247419bf0
https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/0325397d-4ed2-4031-a323-59a0ab285f49

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report

for SDAO

Audited By Seher Saylik

Approved By Ataberk Yavuzer, Kaan Caglan

Website http://singularitydao.ai/

Changelog � Preliminary

Report
18/04/2024

Changelog � Final Report 06/05/2024

http://singularitydao.ai/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 17

Disclaimers 28

Appendix 1. Severity Definitions 29

Appendix 2. Scope 30

System Overview

SDAO is a staking protocol with the following contracts:

SDAOLinearSimpleReward — a reward management contract that allows the addition of rewards

with an emission period, calculates claimable rewards for the users, and facilitates the claiming

process. Additionally, it tracks user shares and reserves pending rewards for users to be claimed

later. The owner of the protocol adds the rewards to the system and determines the emission

durations.

In this system, the reward ratio is calculated based on the staked duration and the amount deposited.

Specifically, the reward is directly proportional to the product of the deposited amount and the stake

duration. This means that users who stake a larger amount for a longer period will earn a higher

proportion.

The formula used for calculating the reward ratio is typically something like:

Reward Ratio=Deposited Amount×Stake Duration

Likewise, when withdrawing deposited amounts, the new score is calculated proportionally to the

withdrawn amount and the total deposited amount, regardless of how much each deposit was locked.

So, the new score is determined by the ratio of the remaining amount to the total deposited amount

of the current score.

SDAOLockedStaking — the main staking contract that facilitates the staking of tokens with

specified locking periods. Users can deposit tokens and extend their locking periods to increase their

score. Withdrawals are allowed after the tokens unlock or immediately with an early unlock fee

deducted.

Important points include a maximum locking period of 1000 days, an early unlock fee capped at 50%

of the deposited amount when users want to withdraw before the unlock date.

Clonable — a contract that provides functionality for creating and managing clones. It allows the

creation of clones with a specified owner, enables ownership transfer, and ensures that only the

owner can execute certain functions.

Privileged roles

The owner of the SDAOLinearSimpleReward contract can initialize the contract, add rewards,

extend the reward duration, recover unsupported tokens,

The owner of SDAOLockedStaking contract can initialoize the contract, enable/disable new

deposits, set early unlock fee per day, set zapper contract, recover unsupported tokens,

withdraw the collected fees.

The owner of Clonable contract can set owner after cloning, transfer ownership.

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 8 out of 10.

Functional requirements are partially provided.

Technical description is provided.

NatSpec is provided but, could be improved.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 96.72%(branch coverage).

Deployment and basic user interactions are covered with tests.

Interactions by several users and some important scenarios are not tested thoroughly.

Security score

Upon auditing, the code was found to contain 1 critical, 0 high, 1 medium, and 1 low severity issues.

All identified issues have been addressed by the SDAO team, resulting in a final security score of 10

out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.7. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The platform owner has the authority to extend or shorten the reward emission time, directly

impacting the rewards that have been earned but not yet claimed. In such instances, users will

receive the same amount of reward over an extended period of time.

Coarse-grained Authorization Model Risks: The broad authorization model increases the risk of

protocol control loss if any authorized address is compromised, potentially leading to

unauthorized actions and significant financial loss.

Single Entity Upgrade Authority: The token ecosystem grants a single entity the authority to

implement upgrades or changes. This centralization of power risks unilateral decisions that may

not align with the community or stakeholders' interests, undermining trust and security.

Findings

Vulnerability Details

F-2024-1336 - Miscalculated deltaScore Allows Malicious Users

Earning Rewards For Free - Critical

Description: The platform permits users to deposit tokens to earn reward tokens. Users

have the flexibility to withdraw their deposited tokens at any time,

regardless of whether it has surpassed the unlock date or not. Rewards

are determined by a score calculated for each user, derived from the

deposited amount multiplied by the staking period. However, a flaw in the

withdraw() function prevents the user's score from being correctly

updated upon withdrawal. This flaw results in users continuing to earn

rewards even after they have withdrawn their tokens. A malicious user can

deposit a certain amount of tokens and immediately withdraw them, thus

initiating the process of earning rewards without actually maintaining a

valid deposit for any significant duration.

When users withdraw their deposited tokens, their score needs to be

updated by calculating a deltaScore. The delta score to be decreased

from the users' total score should be based on the users' total lock

duration, but it has been calculated based on the time elapsed until the

withdrawal.

function _withdraw(uint256 _amount, address _user) internal {

UserInfo storage user = userInfo[address(_user)];

require(user.amount >= _amount, "!balance");

require(_amount != 0, "!amount");

uint256 originalUnlockDate = user.unlockDate;

uint256 deltaScore;

// when unlock date has passed

if (originalUnlockDate < block.timestamp) {

// extend unlock date

uint256 extensionPeriod = block.timestamp - originalUnlockDate;

deltaScore = user.amount * extensionPeriod;

totalScore += deltaScore;

user.score += deltaScore;

user.unlockDate = block.timestamp;

}

// apply withdrawal amount

user.amount -= _amount;

uint256 withdrawalAmount = _amount;

deltaScore = _amount * (block.timestamp - user.lockDate);

totalScore -= deltaScore;

user.score -= deltaScore;

SDAOSimpleRewardAPI(rewardsAPI).changeUserShares(_user, user.score);

// when not yet completely unlocked, apply early unlock fee

if (user.unlockDate > block.timestamp) {

uint256 earlyUnlockFee = withdrawalAmount * (originalUnlockDate - bl

ock.timestamp) * earlyUnlockFeePerDay

/ 1 days / MAX_PERCENTAGE;

earlyUnlockFees += earlyUnlockFee;

withdrawalAmount -= earlyUnlockFee;

emit PaidEarlyUnlockFee(_user, earlyUnlockFee, originalUnlockDate -

block.timestamp);

}

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/6deacebd-882e-4151-a830-c31247419bf0

IERC20(depositToken).transfer(address(_user), withdrawalAmount);

}

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 5

Impact �1�5�� 5

Exploitability �0�2�� 0

Complexity �0�2�� 1

Final Score: 4.8 �Critical)

Hacken Calculator Version: 0.6

Severity: Critical

Recommendations

Remediation: Calculate the deltaScore based on the total locked period of a user.

Resolution: The SDAO team corrected the delta score calculation in the _withdraw

function as follows:

deltaScore = user.score * withdrawalAmount / user.amount;

The new score calculation is made based on the amount. �Revised

commit: 8b12377�

Evidences

PoC�

Reproduce:
Steps to reproduce the issue:

Initialization of the platform

The platform owner initializes the contract and enables the deposits

after adding rewards.

1.000.000 reward tokens are added for a 2-month emission period.

Execution of deposits

UserA deposits 1000 tokens for a one-month locking period.

UserB deposits 1000 tokens for a one-month locking period but,

UserB withdraws it immediately right after the deposit.

Claim

Time advances to 2 months later and both UserA and userB claim

their rewards,

UserA earned reward � 500.000 reward tokens

UserB earned reward � 500.000 reward tokens

The reward amount they got is the same although the userB didn't

have any valid stake during this 2-month period.

Results:
PoC test script

First, set the variables to:

let depositTokensToMint = ethers.utils.parseEther("1000000");

let rewardTokensToMint = ethers.utils.parseEther("1000000");

const { expect } = require("chai");

const { waffle, ethers, network } = require('hardhat');

const { provider, loadFixture } = waffle;

const { deposit } = require("./fixtures");

const {

tx_options,

now,

depositTokensToMint,

rewardTokensToMint,

ONE_MINUTE,

ONE_HOUR,

ONE_DAY,

ONE_MONTH,

ONE_YEAR

} = require("./utils");

const ERC20 = require('../node_modules/@openzeppelin/contracts/build

/contracts/IERC20Metadata.json');

const { time } = require("@openzeppelin/test-helpers");

// vars

const nothing = 0;

const zero_address = ethers.constants.AddressZero;

const MAX_PERCENTAGE = 10000; // 100.00%

const START_NOW = 0;

describe("SDAOLockedStaking contract", function () {

let lockingPoolsImplementation;

let simpleRewardImplementation;

let depositToken;

let rewardToken;

let rewardsAPI;

let lockingPools;

let referenceTimestamp;

let addedRewardsTimestamp;

let alreadyClaimed = ethers.utils.parseUnits("0", 18);

before(async () => {

await network.provider.request({ method: "hardhat_reset", params: []

});

[deployer, user, user2, otheruser, zapper] = await provider.getWalle

ts();

sDAOLockedStaking_CF = await ethers.getContractFactory("SDAOLockedSt

aking");

rewardsAPI_CF = await ethers.getContractFactory("SDAOLinearSimpleRew

ard");

testToken_CF = await ethers.getContractFactory("TestToken");

referenceTimestamp = await now();

});

before("Deploy and mint deposit and reward tokens", async () => {

depositToken = await testToken_CF.deploy("DepositToken", "DT", tx_op

tions);

await depositToken.connect(deployer).mint(user.address, depositToken

sToMint, tx_options);

await depositToken.connect(deployer).mint(user2.address, depositToke

nsToMint, tx_options);

rewardToken = await testToken_

See more

Files:

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/6deacebd-882e-4151-a830-c31247419bf0

F-2024-1335 - Unlock Date Is Not Reset When The Entire Deposit Is

Withdrawn - Medium

Description: The current implementation of the SDAOLockedStaking contract exhibits

a flaw related to the management of user unlock dates upon withdrawal

and subsequent redeposit. When a user withdraws their entire deposited

amount by paying the early unlock fee, the variable user.unlockDate is

not reset within the withdraw() function. Consequently, when a user

attempts to redeposit a new amount of tokens, the new unlock date must

surpass the previous unlock date. Failure to meet this condition prevents

the user from depositing again, even if their current deposit amount is

zero.

function _withdraw(uint256 _amount, address _user) internal {

UserInfo storage user = userInfo[address(_user)];

require(user.amount >= _amount, "!balance");

require(_amount != 0, "!amount");

uint256 originalUnlockDate = user.unlockDate;

uint256 deltaScore;

// when unlock date has passed

if (originalUnlockDate < block.timestamp) {

// extend unlock date

uint256 extensionPeriod = block.timestamp - originalUnlockDate;

deltaScore = user.amount * extensionPeriod;

totalScore += deltaScore;

user.score += deltaScore;

user.unlockDate = block.timestamp;

}

// apply withdrawal amount

user.amount -= _amount;

uint256 withdrawalAmount = _amount;

deltaScore = _amount * (block.timestamp - user.lockDate);

totalScore -= deltaScore;

user.score -= deltaScore;

SDAOSimpleRewardAPI(rewardsAPI).changeUserShares(_user, user.score);

// when not yet completely unlocked, apply early unlock fee

if (user.unlockDate > block.timestamp) {

uint256 earlyUnlockFee = withdrawalAmount * (originalUnlockDate - bl

ock.timestamp) * earlyUnlockFeePerDay

/ 1 days / MAX_PERCENTAGE;

earlyUnlockFees += earlyUnlockFee;

withdrawalAmount -= earlyUnlockFee;

emit PaidEarlyUnlockFee(_user, earlyUnlockFee, originalUnlockDate -

block.timestamp);

}

IERC20(depositToken).transfer(address(_user), withdrawalAmount);

}

Requirement in the deposit() function that prevents users depositing

with an arbitrary unlock time regardless of the previous unlock date.

function _deposit(uint256 _amount,

address _depositor,

address _recipient,

uint256 _lockingPeriod) internal returns (uint256 tokensDeposited) {

...

uint256 newEndPeriod = block.timestamp + _lockingPeriod;

require(newEndPeriod >= user.unlockDate, "!unlockDate");

...

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/11f5d40b-132a-4173-936d-af6fe7362b76

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 4

Impact �1�5�� 4

Exploitability �0�2�� 1

Complexity �0�2�� 1

Final Score: 2.9 �Medium)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

Remediation: Reset the unlockDate value of a user when the entire deposited amount

is withdrawn in the _withdraw() function.

Resolution: The SDAO team implemented an if statement in the _withdraw()

function that resets the unlock date when the entire deposit is withdrawn.

�Revised commit: e4a6ad9�

F-2024-1343 - Return Values Of transfer()/transferFrom() Not

Checked - Low

Description: Not all ERC20 implementations revert() when there's a failure in

transfer() or transferFrom(). The function signature has a boolean

return value and they indicate errors that way instead. By not checking the

return value, operations that should have marked as failed, may potentially

go through without actually transfer anything.

Affected lines:

./contracts/SDAOLockedStaking.sol

148: IERC20(_token).transfer(to, amount);

157: IERC20(depositToken).transfer(msg.sender, fees);

178: IERC20(depositToken).transferFrom(address(_depositor), address(

this), _amount);

232: IERC20(depositToken).transfer(address(_user), withdrawalAmount)

;

./contracts/rewards/SDAOLinearSimpleReward.sol

61: IERC20(_token).transfer(_user, _amount);

123: IERC20(_token).transferFrom(msg.sender, address(this), _totalAm

ount);

132: IERC20(_token).transfer(to, amount);

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

rewards/SDAOLinearSimpleReward.sol [https://github.com/Singularity-

DAO/staking-reward-contracts]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 1/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 1

Impact �1�5�� 4

Exploitability �0�2�� 0

Complexity �0�2�� 1

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/0325397d-4ed2-4031-a323-59a0ab285f49

Severity: Low

Recommendations

Remediation: To ensure the reliability and security of token transfers in your smart

contract, it's crucial to check the return values of the transfer() and

transferFrom() functions. These functions often return a boolean value

indicating the success or failure of the transfer operation. By checking this

return value, you can accurately determine whether the transfer was

successful and handle any potential errors or failures accordingly. Failing

to check the return value may lead to unintended and unhandled transfer

failures, which could have security and usability implications.

OpenZeppelin's SafeERC20 library can be used to ensure transfers' safety.

Resolution: The SDAO team introduced the SafeERC20 library for all the contracts.

�Revised commit: 4c9eb26�

Observation Details

F-2024-1344 - Missing Checks For address(0) When Updating State

Variables - Info

Description: In Solidity, the Ethereum address

0x00 is known as the

"zero address". This address has significance because it's the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. The " Missing zero address control" issue

arises when a Solidity smart contract does not properly check or prevent

interactions with the zero address, leading to unintended behavior. For

instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

Affected code lines:

./contracts/SDAOLockedStaking.sol

139: zapperContract = _zapperContract;

./contracts/utils/Clonable.sol

28: _owner = newOwner;

43: Clonable(newInstance).setOwnerAfterClone(newOwner);

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

utils/Clonable.sol [https://github.com/Singularity-DAO/staking-reward-

contracts]

Status: Fixed

Classification

Impact: 4/5

Likelihood �1�5�� 2

Impact �1�5�� 4

Exploitability �0�2�� 1

Complexity �0�2�� 1

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/d9aff3ef-167b-4be8-a6df-b2a13e3c6153

Likelihood: 2/5

Recommendations

Remediation: It is strongly recommended to implement checks to prevent the zero

address from being set during the initialization of contracts. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Resolution: The SDAO team implemented missing zero checks for the given functions.

�Revised commit: 3619112�

F-2024-1345 - Unnecessary Casting As Variable Is Already Of The

Same Type - Info

Description: In Solidity, explicitly casting a variable to a type that it already represents

is redundant and can lead to confusion and clutter in the code. This

unnecessary casting doesn't typically consume additional gas since

Solidity's optimizer often removes such redundant conversions during

compilation. However, it does affect code readability and may obscure the

actual intent of the code, making it harder for developers to understand

and maintain. Ensuring that casting is used only when necessary helps

maintain clean, clear, and efficient code.

Affected code:

./contracts/SDAOLockedStaking.sol:

54: require(address(depositToken) == address(0), "!reinit"); // Vari

able `depositToken` is converted to `address` from type `address`.

170: UserInfo storage user = userInfo[address(_recipient)]; // Varia

ble `_recipient` is converted to `address` from type `address`.

178: IERC20(depositToken).transferFrom(address(_depositor), address(

this), _amount); // Variable `_depositor` is converted to `address`

from type `address`.

203: UserInfo storage user = userInfo[address(_user)]; // Variable `

_user` is converted to `address` from type `address`.

232: IERC20(depositToken).transfer(address(_user), withdrawalAmount)

; // Variable `_user` is converted to `address` from type `address`.

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

Status: Fixed

Recommendations

Remediation: Review your Solidity code for instances of unnecessary casting where

variables are cast to their own type. Remove these redundant casts to

enhance code clarity and maintainability. When writing new code, ensure

that casting is only applied when changing a variable's type is genuinely

needed. This practice helps in keeping the codebase straightforward and

understandable, reducing potential confusion and errors associated with

misinterpreting the variable types.

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/5c4ce4ee-a62f-41b5-816d-71fef306dbdd

F-2024-1346 - Custom Errors In Solidity For Gas E�ciency - Info

Description: Starting from Solidity version 0.8.4, the language introduced a feature

known as "custom errors". These custom errors provide a way for

developers to define more descriptive and semantically meaningful error

conditions without relying on string messages. Prior to this version,

developers often used the require statement with string error messages

to handle specific conditions or validations. However, every unique string

used as a revert reason consumes gas, making transactions more

expensive.

Custom errors, on the other hand, are identified by their name and the

types of their parameters only, and they do not have the overhead of

string storage. This means that, when using custom errors instead of

require statements with string messages, the gas consumption can be

significantly reduced, leading to more gas-efficient contracts.

Affected code:

./contracts/SDAOLockedStaking.sol:

54: require(address(depositToken) == address(0), "!reinit");

55: require(_depositToken != address(0), "!depositToken");

56: require(_rewardsAPI != address(0), "!rewardsAPI");

77: require(msg.sender == zapperContract, "!zapperContract");

131: require(_earlyUnlockFeePerDay <= MAX_EARLY_UNLOCK_FEE_PER_DAY,

"!MAX_EARLY_UNLOCK_FEE_PER_DAY");

146: require(_token != address(0), "!token");

147: require(_token != depositToken, "!depositToken");

168: require(_lockingPeriod <= MAX_LOCKING_PERIOD, "MAX_LOCKING_PERI

OD");

169: require(depositsEnabled, "!depositsEnabled");

171: require(_amount != 0 || user.amount != 0, "!amount");

173: require(newEndPeriod >= user.unlockDate, "!unlockDate");

204: require(user.amount >= _amount, "!balance");

205: require(_amount != 0, "!amount");

./contracts/utils/Clonable.sol:

18: require(_owner == msg.sender, "ERR_OWNER");

23: require(_owner == address(0), "ERR_REINIT");

./contracts/rewards/SDAOLinearSimpleReward.sol:

83: require(depositContract == address(0), "!reinit");

84: require(_depositContract != address(0), "!depositContract");

85: require(_rewardToken != address(0), "!rewardToken");

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/0cabb8e9-d213-47cb-80e7-25b159d28062

98: require(_totalAmount != 0, "!amount");

99: require(_secondsInPeriod != 0, "!period");

100: require(IERC20(_token).allowance(msg.sender, address(this)) >=

_totalAmount, "!allowance");

101: require(IERC20(_token).balanceOf(msg.sender) >= _totalAmount, "

!balance");

106: require(reward.endOfEmission < block.timestamp

107: || _startOfEmission <= block.timestamp,

108: "!validEmissionPeriod");

130: require(_token != address(0), "!token");

131: require(_token != reward.rewardToken, "!rewardToken");

171: require(msg.sender == depositContract, "!depositContract");

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

rewards/SDAOLinearSimpleReward.sol [https://github.com/Singularity-

DAO/staking-reward-contracts]

utils/Clonable.sol [https://github.com/Singularity-DAO/staking-reward-

contracts]

Status: Fixed

Recommendations

Remediation: It is recommended to use custom errors instead of revert strings to reduce

gas costs, especially during contract deployment. Custom errors can be

defined using the error keyword and can include dynamic information.

F-2024-1348 - State Variables That Are Used Multiple Times In a

Function Should Be Cached In Stack Variables - Info

Description: When performing multiple operations on a state variable in a function, it is

recommended to cache it first. Either multiple reads or multiple writes to a

state variable can save gas by caching it on the stack. Caching of a state

variable replaces each Gwarmaccess �100 gas) with a much cheaper stack

read. Other less obvious fixes/optimizations include having local memory

caches of state variable structs, or having local caches of state variable

contracts/addresses. Saves 100 gas per instance.

./contracts/SDAOLockedStaking.sol

177: uint256 _before = IERC20(depositToken).balanceOf(address(this))

; // State variable `depositToken` is used also on line(s): ['178',

'179'].

182: if (user.amount > 0) { // State variable `user` is used also on

line(s): ['171', '185'].

184: uint256 extensionPeriod = newEndPeriod - user.unlockDate; // St

ate variable `user` is used also on line(s): ['173'].

212: deltaScore = user.amount * extensionPeriod; //State variable `u

ser` is used also on line(s): ['204'].

206: uint256 originalUnlockDate = user.unlockDate; // State variable

`user` is used also on line(s): ['225'].

./contracts/rewards/SDAOLinearSimpleReward.sol

122: emit UpdatedRewardEmission(reward.totalAmount, reward.startOfEm

ission, reward.endOfEmission); // State variable `reward` is used al

so on line(s): ['113', '104'].

106: require(reward.endOfEmission < block.timestamp // State variabl

e `reward` is used also on line(s): ['112', '111', '112', '122'].

110: uint256 start = (reward.lastClaim != 0) ? reward.lastClaim : re

ward.startOfEmission; // State variable `reward` is used also on lin

e(s): ['110'].

110: uint256 start = (reward.lastClaim != 0) ? reward.lastClaim : re

ward.startOfEmission; // State variable `reward` is used also on lin

e(s): ['120', '122'].

143: uint256 start = (reward.lastClaim != 0) ? reward.lastClaim : st

artOfEmission; // State variable `reward` is used also on line(s): [

'143', '139'].

148: : reward.endOfEmission - start; // State variable `reward` is u

sed also on line(s): ['145', '146'].

157: if (userInfo[_user].shares == 0) return 0; // State variable `u

serInfo` is used also on line(s): ['161'].

164: - userInfo[_user].rewardFloor; // State variable `userInfo` is

used also on line(s): ['157', '161'].

189: if (claimable != 0 && totalShares != 0) { // State variable `to

talShares` is used also on line(s): ['192'].

195: if (userInfo[_user].shares == 0) return; // State variable `use

rInfo` is used also on line(s): ['199', '196'].

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

Status: Fixed

Recommendations

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/e6e1b343-9e43-4afe-9f99-4ae4d2972b24

Remediation: Cache state variables in stack or local memory variables within functions

when they are used multiple times. This approach replaces costlier

Gwarmaccess operations with cheaper stack reads, saving approximately

100 gas per instance and optimizing overall contract performance.

F-2024-1349 - Redundant State Variable Ge�ers in Solidity - Info

Description: In Solidity, state variables can have different visibility levels, including

public. When a state variable is declared as public, the Solidity

compiler automatically generates a getter function for it. This implicit

getter has the same name as the state variable and allows external callers

to query the variable's value.

A common oversight is the explicit creation of a function that returns the

value of a public state variable. This function essentially duplicates the

functionality already provided by the automatically generated getter. For

instance, if there's a public state variable uint256 public value;,

there's no need for a function like function getValue() public view

returns (uint256) { return value; }, as the compiler already

provides a value() function.

Affected code:

./contracts/rewards/SDAOLinearSimpleReward.sol:

40: function getRewardInfo() external view override returns (RewardT

okenInfo memory) {

41: return reward;

42: }

Assets:
rewards/SDAOLinearSimpleReward.sol [https://github.com/Singularity-

DAO/staking-reward-contracts]

Status: Mitigated

Recommendations

Remediation: Avoid creating explicit getter functions for 'public' state variables in

Solidity. The compiler automatically generates getters for such variables,

making additional functions redundant. This practice helps reduce

contract size, lowers deployment costs, and simplifies maintenance and

understanding of the contract.

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/452af93c-9257-4ab2-a2c7-f014e3e45b8e

F-2024-1350 - Functions Not Used Internally Can Be Marked As

External - Info

Description: The function transferOwnership() is currently set to public visibility

but is never called internally. Public functions cost more Gas than external

functions.

function transferOwnership(address newOwner) public onlyOwner {

_owner = newOwner;

}

Assets:
utils/Clonable.sol [https://github.com/Singularity-DAO/staking-reward-

contracts]

Status: Fixed

Recommendations

Remediation: Change the given function's visibility to external.

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/1d86eee4-847f-4e7c-9cc7-0c6a44883475

F-2024-1372 - Constructor and initialize() Can Be Marked As Payable

- Info

Description: payable functions cost less gas to execute, since the compiler does not

have to add extra checks to ensure that a payment wasn't provided.

A constructor can safely be marked as payable, since only the deployer

would be able to pass funds, and the project itself would not pass any

funds.

constructor() function in the Clonable contract and initialize()

function in SDAOLockedStaking and SDAOLinearSimpleReward

contracts are not declared as payable.

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

rewards/SDAOLinearSimpleReward.sol [https://github.com/Singularity-

DAO/staking-reward-contracts]

utils/Clonable.sol [https://github.com/Singularity-DAO/staking-reward-

contracts]

Status: Fixed

Recommendations

Remediation: Mark constructors as 'payable' in Solidity contracts to reduce gas costs,

as this eliminates the need for the compiler to add checks against

incoming payments. This is safe because only the deployer can send

funds during contract creation, and typically no funds are sent at this

stage.

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/6fa06876-faa0-4e14-a5fb-88457b2e94ed

F-2024-1374 - Missing Event Emi�ing - Info

Description: Events for critical state changes should be emitted for tracking things off-

chain.

setDepositsEnabled(), setEarlyUnlockFeePerDay(),

setZapperContract() and claim() functions in SDAOLockedStaking

contract do not emit any event although they make important state

updates.

transferOwnership() function in Clonable contract does not emit an

event.

Assets:
SDAOLockedStaking.sol [https://github.com/Singularity-DAO/staking-

reward-contracts]

utils/Clonable.sol [https://github.com/Singularity-DAO/staking-reward-

contracts]

Status: Fixed

Recommendations

Remediation: Create and emit related events.

Resolution: The SDAO team implemented the required events for the given functions.

�Revised commit �3859118�

https://portal.hacken.io/App/Projects/Details/8f9f9206-0635-4013-b919-a50bf6543295/Finding/d306aeeb-33d4-467b-aa1e-c4307c70bb32

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/Singularity-DAO/staking-reward-contracts

Commit 827be52

Whitepaper
https://github.com/hknio/staking-reward-

contracts/blob/main/README.md

Requirements
https://github.com/hknio/staking-reward-

contracts/blob/main/README.md

Technical

Requirements

https://github.com/hknio/staking-reward-

contracts/blob/main/README.md

Contracts in Scope

contracts/rewards/SDAOLinearSimpleReward.sol

contracts/rewards/SDAOSimpleRewardAPI.sol

contracts/utils/Clonable.sol

contracts/SDAOLockedStaking.sol

https://github.com/Singularity-DAO/staking-reward-contracts
https://github.com/hknio/staking-reward-contracts/blob/main/README.md
https://github.com/hknio/staking-reward-contracts/blob/main/README.md
https://github.com/hknio/staking-reward-contracts/blob/main/README.md

