
Smart Contract Platform

Security Analysis Report

Customer: Waterfall.network

Date: 24/06/2024



We express our gratitude to the Waterfall.network team for the collaborative engagement that

enabled the execution of this Security Assessment.

Waterfall Protocol is a high-performance, scalable, Proof-of-Stake smart contract platform. It

addresses blockchain's scalability, security, and decentralization challenges by leveraging Directed

Acyclic Graph (DAG) technology for parallel block production. Key features include low transaction

fees, EVM compatibility, and a highly decentralized network with minimal hardware requirements for

nodes.

Platform: Waterfall

Language: Golang

Tags: Layer 1, BlockDAG

Timeline: 22/04/2024 - 24/06/2024

Methodology: Blockchain Protocol and Security Analysis Methodology

Review Scope

Repository https://gitlab.waterfall.network/waterfall/protocol/coordinator

Commit 9b3570c351d927004e4c5da26f908fda5f6ce65a

Repository https://gitlab.waterfall.network/waterfall/protocol/gwat

Commit 6782049b74c92e58a8ca077a3015ec67dc7ef943

2

https://hackenio.cc/blockchain_methodology
https://gitlab.waterfall.network/waterfall/protocol/coordinator
https://gitlab.waterfall.network/waterfall/protocol/gwat


The system users should acknowledge all the risks summed up in the risks section of the report

11 9 2 0
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count
Critical 1

High 1

Medium 1

Low 8

Vulnerability Status

F-2024-3344 - Inadequate Sender Validation in Deposit Transaction Processing Accepted

F-2024-3521 - Divergence from ERC-721 Standard in Token Implementation Accepted

F-2024-1616 - Critical Vulnerabilities in Go Standard Library Fixed

F-2024-1864 - Deprecated Elliptic Curve Cryptography Fixed

F-2024-2188 - Inherited Issues from Go-Ethereum Fixed

F-2024-2256 - Compatibility Concerns Arising from Outdated EVM Implementation Fixed

F-2024-2993 - Inherited Issues from Prysm Fixed

F-2024-3084 - Utilization of Non-Supported Fork Choice Storage Mechanism Fixed

F-2024-3227 - Insufficiencies in Light Client Implementation Fixed

F-2024-3346 - Bypassing Execution Layer During Validator Exit Fixed

F-2024-3522 - Incorrect Event Emitted During Token Operations Fixed

3

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/628e10b7-01f5-4239-a1ab-012045a3c2d6
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/1483a566-945f-4c76-89da-bd4bf57f67fa
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/b64ea3e2-b1da-411e-84a6-832a6c4b340c
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/60ecd873-2fbc-40fb-a4bf-6ee75a910344
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/34ad48fe-af64-4159-a760-c7c4c054dc73
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/e6b6bd2b-1d1e-4a09-bbe9-a03725c50d73
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/20926822-3a15-42cc-867d-c671c0d1b63c
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/db9d2418-6aa7-4dc7-8d23-66c0d901f99f
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/f706f86e-f4d3-4894-b0d8-525c608a561a
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/fb86b746-7dbc-4d70-982a-44523a6061b9
https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/8d101a80-e838-4477-99e8-0c01166efa0d


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name
Layer 1 Protocol Code Review and Security Analysis Report for

Waterfall.network

Audited By Sofiane Akermoun, Nino Lipartiia

Approved

By
Sofiane Akermoun

Website https://waterfall.network/

Changelog 03/06/2024 - Preliminary Report

Changelog 24/06/2024 - Final Report

4

https://waterfall.network/


Table of Contents

System Overview 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Architecture Quality 7

Findings 10

Vulnerability Details 10

F-2024-1616 - Critical Vulnerabilities In Go Standard Library - Critical 10

F-2024-3346 - Bypassing Execution Layer During Validator Exit - High 14

F-2024-2188 - Inherited Issues From Go-Ethereum - Medium 16

F-2024-1864 - Deprecated Elliptic Curve Cryptography - Low 18

F-2024-2256 - Compatibility Concerns Arising From Outdated EVM Implementation - Low 20

F-2024-2993 - Inherited Issues From Prysm - Low 22

F-2024-3084 - Utilization Of Non-Supported Fork Choice Storage Mechanism - Low 24

F-2024-3227 - Insufficiencies In Light Client Implementation - Low 26

F-2024-3344 - Inadequate Sender Validation In Deposit Transaction Processing - Low 28

F-2024-3521 - Divergence From ERC-721 Standard In Token Implementation - Low 30

F-2024-3522 - Incorrect Event Emitted During Token Operations - Low 32

Observation Details 33

F-2024-1866 - Remnants Of The Ethereum Implementation - Info 33

F-2024-3375 - Test Coverage - Info 35

Appendix 1. Severity Definitions 37

Appendix 2. Scope 38

Components In Scope 38



System Overview

Waterfall is a Layer 1 solution derived from Prysm and Go-Ethereum, implementing consensus and

execution clients in line with the Ethereum 2.0 architecture. This foundation is enhanced with several

features to improve scalability and decentralization.

Key innovations include the implementation of BlockDag logic in the execution client, which allows for

parallel block production. Moreover, the adoption of an optimistic consensus mechanism expedites

the process by furnishing blocks with a high likelihood of finalization.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's Layer 1 protocol project.

Detailed scoring criteria can be referenced in the corresponding section of the Blockchain Protocol

and Security Analysis Methodology.

Documentation quality

Source code documentation draws from both Geth and Prysm projects, ensuring a strong

foundational understanding and continuity within the project.

Waterfall-specific features and changes are meticulously documented, emphasizing the

platform's unique aspects.

The in-code documentation of features falls short of providing comprehensive insights into the

codebase.

There's a noticeable lack of comprehensive documentation available on the project's website,

hindering accessibility and understanding for stakeholders.

Building instructions are insufficient, posing challenges for developers and node operators

seeking to engage with the platform effectively.

The absence of adequate documentation in English presents a significant barrier to wider

adoption and collaboration.

The Waterfall team has indicated their intention to significantly enhance the documentation prior

to the public release of the code.

Code quality

The project inherits strong code quality from Geth and Prysm, forming a sturdy foundation for

development.

Adequate test coverage, which could benefit from enhancement.

The presence of numerous lint warnings suggests areas where refinement is needed to align with

coding best practices.

Unresolved TODO comments and "implement me" panics.

Notable residue code underscores the importance of thorough review and cleanup to optimize

performance and maintainability.

The Waterfall team has conveyed their intent to improve code quality and elevate the overall

standard of the codebase before its public release.

Architecture quality

Waterfall derives its architecture from Prysm and Go-Ethereum, aligning its consensus and

execution clients with the Ethereum 2.0 framework.

An innovative architectural design in the execution client replaces the traditional blockchain

structure with BlockDAG, enhancing scalability.

The consensus client architecture is grounded in blockchain technology, ensuring the system's

robustness and integrity.

The integration of an optimistic consensus mechanism showcases well-designed and effectively

implemented advancements.

7

https://hackenio.cc/blockchain_methodology


Findings

Vulnerability Details

F-2024-1616 - Critical Vulnerabilities in Go Standard Library - Critical

Description: Our security analysis, performed using the govulncheck tool, has

uncovered several vulnerabilities within the standard library dependencies

outlined in the Go version 1.20 specified within the go.mod files of both

the coordinator and gwat codebases. These vulnerabilities, detailed

below, span various security concerns, including incorrect handling of

HTTP headers and cookies, memory exhaustion risks, issues with

certificate verification, denial of service (DoS) vectors, timing side

channels in cryptographic operations, excessive CPU usage, insufficient

sanitization, unsafe runtime behavior, and excessive resource

consumption.

Key Vulnerabilities Identified:

GO-2024-2600: Incorrect Forwarding of Sensitive Headers and

Cookies

Issue: Incorrect forwarding of sensitive headers and cookies on HTTP

redirect in net/http.

Found in: net/http@go1.20

Fixed in: net/http@go1.21.8

Details: pkg.go.dev/vuln/GO-2024-2600

GO-2023-2382: DoS via Chunk Extensions

Issue: Denial of service via chunk extensions in net/http.

Found in: net/http/internal@go1.20

Fixed in: net/http/internal@go1.20.12

Details: pkg.go.dev/vuln/GO-2023-2382

GO-2023-2102: HTTP/2 Rapid Reset Issue

Issue: HTTP/2 rapid reset can cause excessive work in net/http.

Found in: net/http@go1.20

Fixed in: net/http@go1.20.10

Details: pkg.go.dev/vuln/GO-2023-2102

GO-2023-1878: Insufficient Sanitization of Host Header

Issue: Insufficient sanitization of the Host header in net/http.

Found in: net/http@go1.20

Fixed in: net/http@go1.20.6

Details: pkg.go.dev/vuln/GO-2023-1878

8

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/b64ea3e2-b1da-411e-84a6-832a6c4b340c
https://pkg.go.dev/vuln/GO-2024-2600
https://pkg.go.dev/vuln/GO-2023-2382
https://pkg.go.dev/vuln/GO-2023-2102
https://pkg.go.dev/vuln/GO-2023-1878


GO-2023-1704: Excessive Memory Allocation

Issue: Excessive memory allocation in net/http and net/textproto.

Found in: net/textproto@go1.20

Fixed in: net/textproto@go1.20.3

Details: pkg.go.dev/vuln/GO-2023-1704

GO-2023-1621: Incorrect Calculation on P256 Curves

Issue: Incorrect calculation on P256 curves in crypto/internal/nistec.

Found in: crypto/internal/nistec@go1.20

Fixed in: crypto/internal/nistec@go1.20.2

Details: pkg.go.dev/vuln/GO-2023-1621

GO-2023-1571: Denial of Service via Crafted HTTP/2 Stream

Issue: Denial of service via crafted HTTP/2 stream in net/http and

golang.org/x/net.

Found in: net/http@go1.20

Fixed in: net/http@go1.20.1

Details: pkg.go.dev/vuln/GO-2023-1571

Impact Analysis:

The exploitation of these vulnerabilities, particularly in the context of

inducing a Denial of Service (DoS) via RPC requests or any user-facing

features that are based on the HTTP protocol, presents a critical threat to

the stability and security of the network infrastructure. Such vulnerabilities

compromise the integrity and availability of nodes, which are foundational

to the network's resilience. The implications of these security flaws extend

beyond mere disruptions, potentially paving the way for more

sophisticated attacks. Notably, they could facilitate conditions conducive

to a 51% attack, wherein an adversary could gain disproportionate control

over the network, thereby compromising its security and governance. This

scenario underscores a severe risk to the network's operational continuity

and trustworthiness.

Exploit Likelihood:

Given the detailed documentation and the awareness of these

vulnerabilities within the cybersecurity community, the likelihood of

exploitation is considerably high. The public availability of information

regarding these vulnerabilities significantly reduces the barrier to entry for

potential attackers, making it imperative to assume a proactive defensive

stance. The combination of their documented nature, ease of exploitation,

and the high stakes involved in terms of network integrity and availability

amplifies the urgency of addressing these vulnerabilities promptly.

Consequently, it is vital to prioritize remediation efforts to mitigate the risk

of malicious exploitation that could undermine the network's foundational

security principles.

9

https://pkg.go.dev/vuln/GO-2023-1704
https://pkg.go.dev/vuln/GO-2023-1621
https://pkg.go.dev/vuln/GO-2023-1571


Assets:
Dependencies

Status: Fixed

Classification

Impact: 5/5

Likelihood: 5/5

Severity: Critical

Recommendations

Remediation: In light of the vulnerabilities identified within the Go standard library

dependencies as specified by the project's use of Go version 1.20, urgent

action is required to safeguard the integrity and availability of the network,

particularly given the significant risks these vulnerabilities pose, including

the potential for a D.O.S. attack scenarios. The following measures are

strongly recommended:

Immediate Upgrade: Consider upgrading both the gwat and

coordinator repositories to the latest stable version of Go,

specifically Go 1.22, as it addresses not only the documented

vulnerabilities but also additional security issues introduced in Go 1.21.

This upgrade is critical for eliminating the identified security risks and

ensuring robust protection against the vulnerabilities present in

current and previous versions.

Dependency Audit and Update: Conduct a comprehensive audit of

all project dependencies. This audit should not only verify that each

dependency is updated to the most secure version but also assess

the necessity of each dependency to minimize the attack surface.

Security Patch Application: For dependencies that cannot be

immediately updated, apply available security patches or workarounds

to mitigate known vulnerabilities. This stopgap measure should only

be temporary while plans for a more sustainable update are enacted.

Optimize CI/CD Pipeline: Implement a vulnerability dependency

checker within your CI/CD workflow. This proactive strategy facilitates

early detection and resolution of potential security vulnerabilities in

project dependencies. By integrating this tool into your development

lifecycle, you can effectively mitigate security risks before they impact

your application's security integrity.

Enhanced Monitoring and Logging: Implement enhanced monitoring

and logging of network activity and system performance to detect

unusual patterns that may indicate an attempted or successful

exploitation of these vulnerabilities. Early detection is key to

preventing widespread impact.

10



Vulnerability Management Process: Establish or refine a vulnerability

management process that includes regular scans, assessments, and

updates of dependencies. This process should also involve staying

informed on new vulnerabilities and threats as they are discovered.

Education and Awareness: Increase awareness among the

development and operations teams regarding the importance of

security practices, particularly around dependency management and

vulnerability mitigation. Encourage a culture of security-first thinking.

11



F-2024-3346 - Bypassing Execution Layer During Validator Exit -

High

Description: The current architecture of the Waterfall network stipulates that a

validator must send a transaction with the Exit operation through the

execution layer, which is then validated and passed to the consensus

layer. However, an inconsistency arises due to the presence of CLI

commands in the coordinator such as

VoluntaryExitPublicKeysFlag and ExitAllFlag, which allow

validators to exit directly from the consensus layer. These flags are

remnants from the prysm implementation, which employs a different

approach to validator exits compared to coordinator.

This inconsistency can lead to various issues and potential malicious

behavior, resulting in security vulnerabilities. One significant concern is

that this direct exit does not trigger the synchronization process on the

gwat side, leaving the execution layer unaware of the change.

Consequently, the states of the execution and consensus layers can

become inconsistent, potentially leading to severe consequences.

Moreover, this incorrect flow bypasses several critical checks performed

by gwat, including the validation of whether the address is permitted to

withdraw and adherence to trial period rules. Bypassing these checks can

have serious repercussions on the system's reliability and security.

Assets:
validator module

[https://gitlab.waterfall.network/waterfall/protocol/coordinator ]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 5/5

Severity: High

Recommendations

Remediation: It is advisable to deactivate the VoluntaryExitPublicKeysFlag and

ExitAllFlag flags and remove the functions responsible for validator

exits through the Command-line interface of the coordinator.

Implementing these measures will help maintain consistency between the

12

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/fb86b746-7dbc-4d70-982a-44523a6061b9


execution and consensus layers, thereby enhancing the overall security

and integrity of the network.

Additionally, thorough documentation should be provided to outline the

correct procedure for validator exits, ensuring all stakeholders are aware

of the required process.

By establishing a clear and secure exit protocol, the network can mitigate

risks associated with unauthorized exits and maintain a higher standard of

system reliability and security.

13



F-2024-2188 - Inherited Issues from Go-Ethereum - Medium

Description: Despite substantial deviations from the original geth codebase, the

current gwat implementation still retains known issues inherited from

geth. Although these issues were previously resolved in the geth

repository, they have yet to be addressed in gwat. The primary aim is to

emphasize the crucial importance of ongoing codebase updates to rectify

identified bugs and uphold system stability and security. Integrating

comparable fixes from Go-Ethereum is essential to enhance the system's

resilience and security posture.

The following list comprises bugs and their corresponding pull requests for

fixes discovered across releases, commencing from v1.10.11. It is

imperative to emphasize that the list encompasses only those issues that

potentially remain pertinent to the gwat codebase, while others have

been omitted.

Rectify chain tracing to prevent encountering an Out of Memory

(OOM) state (#23736).

Address the simulated backend gas price suggestion to align with

EIP-1559 standards (#23838, #23840). However, note that this fix

introduces a data race condition issue, which necessitates the

implementation of the follow-up fix included in #23898.

Resolve a crash occurring in abigen generated code when backend

header retrieval fails (#23781).

Mitigate an issue where a malicious response could lead to the

crashing of the syncing node (#23960).

Amend the receiptsRoot field name in the EVM command output

(#23924).

Fix transaction sender recovery functionality in ethclient (#23877).

Adjust the maximum Time to Live setting on Clouflare (#23885).

Enhance intrinsicGas output in the t9n tool (#23889).

Address a corner-case scenario in the transaction hash indexer

(#24024).

Update log messages related to RPC method invocations to prevent a

name clash when using the JSON output format (#24112).

Fix inconsistencies in block tracing via debug.traceBlockByHash

(#24286).

The issue concerning EIP-712, particularly when the compilation to

WASM fails, has been resolved (#24029). Additionally, another issue

related to this Ethereum Improvement Proposal, specifically regarding

the incorrect signing-hash, has been fixed (#24220).

Ensure accurate EVM execution times exported via metrics (#24304).

Resolve edge cases in the range prover functionality (#24266,

#24257).

Rectify an error related to HTTP2 handling (#24292).

14

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/34ad48fe-af64-4159-a760-c7c4c054dc73
https://github.com/ethereum/go-ethereum/pull/23736
https://github.com/ethereum/go-ethereum/pull/23838
https://github.com/ethereum/go-ethereum/pull/23840
https://github.com/ethereum/go-ethereum/pull/23898
https://github.com/ethereum/go-ethereum/pull/23781
https://github.com/ethereum/go-ethereum/pull/23960
https://github.com/ethereum/go-ethereum/pull/23924
https://github.com/ethereum/go-ethereum/pull/23877
https://github.com/ethereum/go-ethereum/pull/23885
https://github.com/ethereum/go-ethereum/pull/23889
https://github.com/ethereum/go-ethereum/pull/24024
https://github.com/ethereum/go-ethereum/pull/24112
https://github.com/ethereum/go-ethereum/pull/24286
https://github.com/ethereum/go-ethereum/pull/24029
https://github.com/ethereum/go-ethereum/pull/24220
https://github.com/ethereum/go-ethereum/pull/24304
https://github.com/ethereum/go-ethereum/pull/24266
https://github.com/ethereum/go-ethereum/pull/24257
https://github.com/ethereum/go-ethereum/pull/24292


Address several data races related to snapshot sync (#24685).

Various improvements to snapshot sync are introduced (#25831,

#25694, #25666, #25651).

Prevent the JSON-RPC client from hanging when invalid batch results

are returned by the server (#26064).

Resolve a corner-case issue in the filter system (#26054).

It is noteworthy that many of these bugs do not pose an immediate

security risk. However, others could lead to node halting, incorrect

behavior, memory leakage, or even node crashes (see #23781, #23960,

#23736).

Assets:
geth [https://gitlab.waterfall.network/waterfall/protocol/gwat ]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 2/5

Severity: Medium

Recommendations

Remediation: To mitigate the identified issues, it is advisable to address each specified

problem individually. This entails conducting comprehensive assessments

and implementing targeted solutions to resolve them. Alternatively, if any

of the listed issues are not applicable to the project's current state, it is

recommended to add a comment explaining the situation or remove the

code if it is no longer in use.

Moreover, maintaining vigilant oversight over forthcoming releases of

geth is imperative to promptly identify and address any pertinent issues

that may arise. Regular monitoring ensures that the project remains up-to-

date with the latest advancements and fixes in the underlying codebase,

further fortifying its resilience and security posture.

By staying vigilant and proactively addressing potential vulnerabilities, the

project can maintain a secure and stable codebase over the long term.

15

https://github.com/ethereum/go-ethereum/pull/24685
https://github.com/ethereum/go-ethereum/pull/25831
https://github.com/ethereum/go-ethereum/pull/25694
https://github.com/ethereum/go-ethereum/pull/25666
https://github.com/ethereum/go-ethereum/pull/25651
https://github.com/ethereum/go-ethereum/pull/26064
https://github.com/ethereum/go-ethereum/pull/26054
https://github.com/ethereum/go-ethereum/pull/23781
https://github.com/ethereum/go-ethereum/pull/23960
https://github.com/ethereum/go-ethereum/pull/23736


F-2024-1864 - Deprecated Elliptic Curve Cryptography - Low

Description: The issue at hand concerns the use of deprecated methods and functions

for elliptic curve cryptography. Specifically, in Go version 1.21.0 and

onwards, functions such as elliptic.Marshal, elliptic.Unmarshal

and elliptic.GenerateKey, alongside methods like IsOnCurve,

ScalarMult, and ScalarBaseMult, have been deprecated. This

deprecation is documented in the commit from the official Go repository.

In particular, the coordinator codebase employs the ScalarBaseMult

function within the p2p package. Additionally, deprecated functions are

also found across various packages within the gwat codebase, including:

crypto
ecies
rlpx
scwallet
v4wire
v5wire
discover

Issues associated with these deprecated functions include potential

panics and incorrect results. It's notable that elliptic.Marshal

behavior becomes undefined if the provided point is not on the curve.

Moreover, methods such as IsOnCurve, ScalarMult, and

ScalarBaseMult are marked as low-level and unsafe in the

documentation. Additionally, there have been reports of incorrect results

from ScalarMult and ScalarBaseMult, indicating potential

vulnerabilities (see issue F-2024-1616 and report GO-2023-1621).

Such unexpected behaviors present a risk of introducing security

vulnerabilities or inconsistencies, compromising the integrity and security

of the codebase. Consequently, areas of the code utilizing these functions

may become susceptible to exploitation, highlighting the urgent need for

remediation.

Assets:
prysm [https://gitlab.waterfall.network/waterfall/protocol/coordinator ]

beacon-chain/p2p module

[https://gitlab.waterfall.network/waterfall/protocol/coordinator ]

geth [https://gitlab.waterfall.network/waterfall/protocol/gwat ]

Status: Fixed

Classification

Impact: 3/5

16

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/60ecd873-2fbc-40fb-a4bf-6ee75a910344
https://github.com/golang/go/commit/f03fb147d773f3e0cee437e02ac2de5ce1d5e981
https://pkg.go.dev/vuln/GO-2023-1621


Likelihood: 1/5

Severity: Low

Recommendations

Remediation: To address this issue proficiently, consider the following strategies:

Develop custom elliptic cryptography functionalities by referencing

established implementations, such as those found in geth, tailored to

meet your specific requirements.

Transition to the usage of crypto/ecdh where appropriate, ensuring

adherence to recommended practices for each function as specified

in the documentation.

In situations where direct remedies may not be the best fit, one

potential approach is to incorporate logic for catching and recovering

from panics.

Keep your codebase up-to-date by upgrading to the latest stable

version of Go, currently version 1.22, which integrates critical fixes

and enhancements.

Maintain a proactive stance towards maintenance by diligently

monitoring updates in geth and promptly integrating relevant patches

and improvements into your project. This approach will bolster the

resilience and effectiveness of your cryptographic implementations,

safeguarding them against potential vulnerabilities and ensuring the

continued security of your applications.

Adopting these recommendations will not only mitigate potential security

vulnerabilities but also ensure the continued reliability and effectiveness

of your cryptographic implementations in Go.

17

https://github.com/ethereum/go-ethereum/commit/ab49f228ad6f37ba78be66b34aa5fee740245f57


F-2024-2256 - Compatibility Concerns Arising from Outdated EVM

Implementation - Low

Description: The current issue stems from an outdated implementation of the

Ethereum Virtual Machine (EVM) within the gwat codebase. This

implementation fails to integrate crucial modifications and improvements

introduced in Go-Ethereum.

Notably, significant changes have been made to the EVM codebase,

particularly in the Sharblu and Hourglass Nebula releases. One critical
alteration is the implementation of EIP-3855, which introduces the PUSH0

opcode. This alteration seeks to optimize contract size, reduce the

likelihood of contract misuse of instructions, and diminish the necessity

for DUP instructions. Nonetheless, the absence of support for the PUSH0

opcode in gwat may potentially result in discrepancies in contract

behavior, thereby posing risks to the integrity and reliability of the system.

Furthermore, it is pertinent to acknowledge the existence of several

modifications and enhancements that notably enhance the speed and

performance of the EVM. These enhancements encompass various

aspects, including:

Optimization of the EVM MSTORE opcode, resulting in 75% increase in

speed (#24847, #24860).

Streamlining of the EVM implementation and enhancement of

interpreter loop performance through comprehensive code cleanup

(#24120, #24048, #24085, #24026, #24031, #24040, #23970,

#23952, #23974, #23977, #23967, #24066).

Introduction of changes regarding the INVALID opcode 0xFE

(#24017).

Modernization of internal opcode names to align with Solidity

(#23976, #24022, #24016).

Resolution of issues related to generating Go/Java bindings for

contracts with struct-typed constructor parameters (#23940).

Migration of built-in EVM trace loggers from the core/vm to a

dedicated package. (#23892).

While these changes may not be strictly essential for security purposes,

their implementation can significantly enhance the performance of the

EVM. Therefore, considering the adoption of these enhancements could

lead to notable improvements in the efficiency and effectiveness of the

EVM within the gwat framework.

Assets:
geth [https://gitlab.waterfall.network/waterfall/protocol/gwat ]

Status: Fixed

18

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/e6b6bd2b-1d1e-4a09-bbe9-a03725c50d73
https://github.com/ethereum/go-ethereum/releases/tag/v1.10.18
https://github.com/ethereum/go-ethereum/releases/tag/v1.10.14
https://eips.ethereum.org/EIPS/eip-3855?ref=zaryabs.com
https://github.com/ethereum/go-ethereum/pull/24847
https://github.com/ethereum/go-ethereum/pull/24860
https://github.com/ethereum/go-ethereum/pull/24120
https://github.com/ethereum/go-ethereum/pull/24048
https://github.com/ethereum/go-ethereum/pull/24085
https://github.com/ethereum/go-ethereum/pull/24026
https://github.com/ethereum/go-ethereum/pull/24031
https://github.com/ethereum/go-ethereum/pull/24040
https://github.com/ethereum/go-ethereum/pull/23970
https://github.com/ethereum/go-ethereum/pull/23952
https://github.com/ethereum/go-ethereum/pull/23974
https://github.com/ethereum/go-ethereum/pull/23977
https://github.com/ethereum/go-ethereum/pull/23967
https://github.com/ethereum/go-ethereum/pull/24066
https://github.com/ethereum/go-ethereum/pull/24017
https://github.com/ethereum/go-ethereum/pull/23976
https://github.com/ethereum/go-ethereum/pull/24022
https://github.com/ethereum/go-ethereum/pull/24016
https://github.com/ethereum/go-ethereum/pull/23940
https://github.com/ethereum/go-ethereum/pull/23892


Classification

Impact: 1/5

Likelihood: 3/5

Severity: Low

Recommendations

Remediation: To address the issue effectively, it is imperative to prioritize the integration

of critical updates from the Go-Ethereum codebase into gwat.

Specifically, adding support for the PUSH0 opcode, as per the

implementation geth (see #24039), is essential.

Furthermore, it is advisable to consider implementing the additional

modifications and enhancements outlined above to improve EVM

compatibility, enhance the correctness of smart contract behaviors, and

optimize overall system performance.

By diligently incorporating these proactive measures, gwat can ensure the

seamless compatibility of its EVM implementation, thus fortifying the

reliability and performance of the system over the long term.

19

https://github.com/ethereum/go-ethereum/pull/24039


F-2024-2993 - Inherited Issues from Prysm - Low

Description: Despite significant deviations from the original prysm codebase, the

current coordinator implementation still harbors known bugs and

security vulnerabilities inherited from prysm. Although these issues were

previously resolved in the prysm repository, they have yet to be

addressed in coordinator. It is vital to prioritize continuous updates to

the codebase to rectify identified security flaws and maintain system

stability and security. Integrating similar fixes from Prysm is essential to

bolster the system's resilience and security posture.

The following list includes security issues and their corresponding pull

requests for fixes identified across releases, starting from v2.1.1.

Additionally, several non-security-related bugs are worth addressing. The

complete list of bugs can be found in the prysm repository. It is important

to note that this list only includes issues that are potentially relevant to the

coordinator codebase, while others have been omitted.

Updated Base Docker Images (#11958).

Fixed Pagination Panic (#12932).

Updated Bazel Nogo configuration to run the ineffassign static

analyzer for all Go files (#12578).

Released Lock Before Panicking (#12464).

Addressed incomplete key deletions via the key manager API

(#12284).

Mitigated potential DoS vulnerabilities via beacon node API endpoints

if exposed to untrusted parties (issue #9247).

It is important to note that the last issue, although not fully resolved in the

Prysm implementation, has been partially mitigated through

comprehensive documentation on API public exposure, helping validators

avoid risky behavior.

Assets:
prysm [https://gitlab.waterfall.network/waterfall/protocol/coordinator ]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 1/5

Severity: Low

Recommendations

20

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/20926822-3a15-42cc-867d-c671c0d1b63c
https://github.com/prysmaticlabs/prysm/issues?q=is%3Aissue+is%3Aclosed+label%3ABug
https://github.com/prysmaticlabs/prysm/pull/11958
https://github.com/prysmaticlabs/prysm/pull/12932
https://github.com/prysmaticlabs/prysm/pull/12578
https://github.com/prysmaticlabs/prysm/pull/12464
https://github.com/prysmaticlabs/prysm/pull/12284
https://github.com/prysmaticlabs/prysm/issues/9247
https://docs.prylabs.network/docs/how-prysm-works/ethereum-public-api#performing-requests-against-a-local-prysm-node


Remediation: To effectively resolve the identified issues, it is prudent to tackle each

problem individually. This entails conducting thorough assessments,

implementing precise solutions, and adding appropriate documentation

where required. If any of the listed issues are not pertinent to the project's

current status, it is advisable to provide explanatory comments or remove

the redundant code altogether.

Moreover, maintaining vigilant oversight over forthcoming releases of

prysm is essential to promptly identify and address any relevant issues

that may arise. Regular monitoring ensures that the project remains up-to-

date with the latest advancements and fixes in the underlying codebase,

further fortifying its resilience and security posture.

By remaining vigilant and proactively addressing potential vulnerabilities,

the project can maintain a secure and stable codebase over the long term.

21



F-2024-3084 - Utilization of Non-Supported Fork Choice Storage

Mechanism - Low

Description: The prysm implementation of the Beacon node, which served as the

foundational code for the coordinator implementation, originally

permitted the configuration of the storage option for the LMD-GHOST

forkchoice. By default, the proto array is utilized, but there was an option

to configure a doubly linked proto array node structure.

In the current iteration of the Waterfall project, the coordinator

implementation exclusively supports the proto array option, rendering the

doubly linked proto array unsupported. The issue arises because the

configuration feature for the LMD-GHOST forkchoice store remains

present. Specifically, the enableForkChoiceDoublyLinkedTree flag

allows this configuration option when setting up the beacon-chain client:

coordinator/config/features/config.go:140

// ConfigureBeaconChain sets the global config based

// on what flags are enabled for the beacon-chain client.

func ConfigureBeaconChain(ctx *cli.Context) {

/*

Other features configuration

*/

if ctx.Bool(enableForkChoiceDoublyLinkedTree.Name) {

logEnabled(enableForkChoiceDoublyLinkedTree)

cfg.EnableForkChoiceDoublyLinkedTree = true

}

Init(cfg)

}

Enabling this feature and using the doubly linked proto array as a store for

the LMD-GHOST forkchoice implementation can lead to unpredictable

behaviors, as it has not been fully integrated into the coordinator

implementation. This could result in critical issues such as panics due to

unimplemented functions:

coordinator/beacon-chain/forkchoice/doubly-linked-tree/types.go:20

func (f *ForkChoice) CollectForkExcludedBlkRoots(leaf common.Hash) c

ommon.HashArray {

//TODO implement me

panic("implement me")

}

func (f *ForkChoice) GetParentByOptimisticSpines(ctx context.Context

, optSpines []common.HashArray, jCpRoot [32]byte) ([32]byte, error)

{

//TODO implement me

panic("implement me")

}

These potential issues significantly compromise the overall stability,

robustness, and security of the client application, as well as the integrity

and reliability of the blockchain network.

22

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/db9d2418-6aa7-4dc7-8d23-66c0d901f99f


Assets:
beacon-chain/forkchoice module

[https://gitlab.waterfall.network/waterfall/protocol/coordinator ]

Status: Fixed

Classification

Impact: 2/5

Likelihood: 1/5

Severity: Low

Recommendations

Remediation: It is advisable to deactivate the option to configure the node with the

EnableForkChoiceDoublyLinkedTree flag enabled. Furthermore, it is

suggested to contemplate the removal of the doublylinkedtree

package if there are no intentions to maintain it in the foreseeable future.

Implementing these measures will significantly enhance the robustness

and security of the system, thereby fortifying its resilience against

potential vulnerabilities and ensuring its long-term stability.

23



F-2024-3227 - Insufficiencies in Light Client Implementation - Low

Description: The current issue concerns the incomplete support for light clients within

the execution layer of the gwat implementation. While gwat ostensibly

supports light client operation via the LightServeFlag, and full node

operators can activate light server functionality using the SyncModeFlag,

several methods essential to the light client remain unimplemented. These

methods currently trigger a panic response with the message

"implement me" or "not implemented", which undermines the

functionality of the light client. The methods in question are as follows:

func (lc *LightChain) GetLastCoordinatedCheckpoint

func (lc *LightChain) EnterNextEra

func (lc *LightChain) StartTransitionPeriod

func (lc *LightChain) EpochToEra

func (lc *LightChain) GetValidatorSyncData

func (lc *LightChain) GetTransaction

func (lc *LightChain) GetTransactionReceipt

func (lc *LightChain) GetEpoch

func (lc *LightChain) IsSynced

func (lc *LightChain) Synchronising

func (lc *LightChain) FinSynchronising

func (lc *LightChain) DagSynchronising

func (lc *LightChain) IsRollbackActive

func (lc *LightChain) CurrentHeader

func (lc *LightChain) StateCache

func (lc *LightChain) StateAt

func (w *lightPeerWrapper) RequestHashesBySlots

The absence of these implementations severely limits the light client's

ability to access the same data as full nodes, effectively rendering them

non-functional. The potential of these functions to induce panics

undermines the reliability and security of the nodes.

Furthermore, a similar issue pertains to the consensus layer. The

coordinator implementation currently lacks support for light clients.

Although this does not constitute a direct security vulnerability, supporting

light clients would significantly enhance the network's reliability and

decentralization.

Assets:
Light client

Status: Fixed

Classification

24

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/f706f86e-f4d3-4894-b0d8-525c608a561a


Impact: 1/5

Likelihood: 1/5

Severity: Low

Recommendations

Remediation: To address these issues, it is recommended to fully implement light client

and light server functionality across both the execution and consensus

layers. This will ensure that light clients have equivalent access to data as

full nodes, thereby bolstering the overall reliability and security of the

network.

For guidance on implementing light clients in the coordinator, it is

advisable to review the following issue, which tracks the progress of light

client implementation in the prysm project. While leveraging the

techniques implemented in prysm can significantly expedite the process

and facilitate the support of light clients in the Waterfall project, the

substantial logical differences between Waterfall and prysm make full

integration less straightforward.

If supporting light nodes is not deemed necessary and is postponed, it is

highly recommended to disable the corresponding LightServeFlag for

light clients and SyncModeFlag for full nodes' light server functionality.

This will prevent any attempts to run the light client or activate the light

server on full nodes, thereby avoiding unexpected panics and enhancing

the overall security posture of the project.

25

https://github.com/prysmaticlabs/prysm/issues/11571


F-2024-3344 - Inadequate Sender Validation in Deposit Transaction

Processing - Low

Description: The issue arises from the current implementation of transaction validation

for deposit operations within the execution layer. When a transaction to

create a new deposit is received, several checks are performed within the

checkDepositOperation function to ensure its validity. However, a

significant oversight exists: the function does not verify that the

CreatorAddress provided in the deposit data matches the transaction

sender. While this check is unnecessary for existing validators, it is

essential for the initial registration of a validator. This omission allows

anyone to create a deposit transaction with an arbitrary

CreatorAddress, generate a signature using their own BLS keys, and

successfully execute the transaction.

Although this behavior is typically not incentivized, it can pose a threat

under certain circumstances. Specifically, the described action prevents

the legitimate owner of the CreatorAddress from running a validator,

thereby compromising their ability to participate in the network.

Assets:
core module [https://gitlab.waterfall.network/waterfall/protocol/gwat ]

Status: Accepted

Classification

Impact: 1/5

Likelihood: 5/5

Severity: Low

Recommendations

Remediation: To address this issue, it is recommended to update the

checkDepositOperation function to include a verification step that

ensures the transaction sender matches the CreatorAddress in the

deposit data when registering a new validator. A possible solution is

illustrated by the following code:

validator, err := pool.chain.ValidatorStorage().GetValidator(pool.cu

rrentState, op.CreatorAddress())

if err == valStore.ErrNoStateValidatorInfo {

if op.CreatorAddress() != from {

return valOperation.ErrInvalidCreator

}

26

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/628e10b7-01f5-4239-a1ab-012045a3c2d6


return nil

}

This additional check will prevent unauthorized creation of deposit

transactions and protect the integrity of the validator registration process.

27



F-2024-3521 - Divergence from ERC-721 Standard in Token

Implementation - Low

Description: The current NFT token implementation in the gwat codebase deviates

significantly from the ERC-721 standard, despite references implying

support for it.

The primary issue is the absence of the safeTransferFrom method.

Although some necessary methods for the

safeTransferFromOperation type exist, the safeTransferFrom

method itself remains commented out with the note // TODO:

Implement safeTransferFrom for NFTs.

This deviation from the ERC-721 standard increases the likelihood of

integration issues with other systems that expect standard-compliant

behavior. As a result, the token implementation may face interoperability

challenges, leading to potential errors and decreased reliability.

Furthermore, such inconsistencies can hinder the adoption and

trustworthiness of the token, making it more susceptible to bugs and

security vulnerabilities.

Assets:
token module [https://gitlab.waterfall.network/waterfall/protocol/gwat ]

Status: Accepted

Classification

Impact: 1/5

Likelihood: 2/5

Severity: Low

Recommendations

Remediation: To align the token implementation with the ERC-721 standard and

enhance system reliability, the following actions are recommended:

Implement safeTransferFrom:

Develop and integrate the safeTransferFrom method to fully

support the ERC-721 standard.

Ensure token transfers are safe and compatible with other ERC-721

compliant systems.

Update Documentation:

28

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/1483a566-945f-4c76-89da-bd4bf57f67fa
https://eips.ethereum.org/EIPS/eip-721#specification


Provide a detailed explanation of the current state of ERC-721

support.

Include a comprehensive guide on the usage and limitations of the

current token implementation.

Outline the implementation roadmap, specifying timelines for

completing the safeTransferFrom method and any other pending

features.

Stakeholder Communication:

Inform stakeholders about the current limitations and future

improvements.

Provide regular updates on the progress of implementing the

safeTransferFrom method and other enhancements.

By following these recommendations, the project can ensure compliance

with the ERC-721 standard, improving interoperability, reliability, and

overall security of the token implementation.

29



F-2024-3522 - Incorrect Event Emitted During Token Operations -

Low

Description: In the current implementation of token-related methods, there are

discrepancies in event emission, which could lead to confusion and lack of

clarity regarding token transfers and approvals.

The transferFrom method emits an ApprovalWrc20 event with an

empty sender address. This lack of essential information about the

address whose allowance has changed can be misleading and obscure.

The buy method affects balances and approvals, yet corresponding

events are not triggered, leaving stakeholders uninformed about these

changes.

Failure to emit accurate and informative events during token operations

can lead to misunderstandings, hinder transparency, and impede the

effective tracking of token-related activities.

Assets:
token module [https://gitlab.waterfall.network/waterfall/protocol/gwat ]

Status: Fixed

Classification

Impact: 1/5

Likelihood: 4/5

Severity: Low

Recommendations

Remediation: It is advised to rectify the event emission in the mentioned methods to

ensure accurate and informative event logs. This includes emitting the

correct sender address in the ApprovalWrc20 event and triggering

events corresponding to changes in balances and approvals during the

buy method execution. Implementing these changes will enhance

transparency, facilitate accurate tracking of token-related activities, and

foster better understanding among stakeholders.

30

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/8d101a80-e838-4477-99e8-0c01166efa0d


Observation Details

F-2024-1866 - Remnants of the Ethereum Implementation - Info

Description: Despite moving away from Ethereum implementations, the coordinator

repository, originally forked from the prysm codebase, still retains certain

redundancies.

Although the project no longer employs Proof-of-Work (PoW) consensus,

remnants of PoW-related functionalities persist within the codebase.

Notably, the files coordinator/beacon-

chain/blockchain/pow_block.go and its associated test file continue

to exist, despite being rendered obsolete. The sole function within

pow_block.go, validateTerminalBlockDifficulties, remains

unused and serves no practical purpose, contributing to code clutter and

hindering the readability of the coordinator component.

Another concern is the presence of the AltairForkEpoch configuration

for the beacon chain node. While this value may be relevant in the context

of Ethereum 2.0, it is unnecessary for the Waterfall project and may lead

to incorrect node behavior if misconfigured.

Furthermore, a significant portion of the code employs perplexing names

containing "pow" and "eth1", despite these functionalities being reworked

for project-specific requirements. The persistence of these unchanged

names adds complexity and diminishes the readability of the codebase,

particularly within the powchain package.

Assets:
prysm [https://gitlab.waterfall.network/waterfall/protocol/coordinator ]

beacon-chain/powchain module

[https://gitlab.waterfall.network/waterfall/protocol/coordinator ]

Status: Accepted

Recommendations

Remediation: To address these issues effectively, the following actions are

recommended:

Removal of both coordinator/beacon-

chain/blockchain/pow_block.go and coordinator/beacon-

chain/blockchain/pow_block_test.go from the project

repository.

Consideration of removing the AltairForkEpoch from node

configuration, along with any code related to Beacon Chain Phase 0,

31

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/a0474416-de24-4610-8e48-8871d05c1ac5


unless it serves a specific purpose for the Altair fork and remains

relevant to the Waterfall project.

Refactoring of confusing variable, method, function, and interface

names associated with PoW functionalities, ensuring clarity and

coherence throughout the codebase.

Enhancement of documentation to provide comprehensive in-code

explanations of functionalities, aiding developers in understanding

and navigating the coordinator component effectively.

Implementing these recommendations will streamline the codebase,

enhance clarity, and facilitate ease of development within the coordinator

component.

32



F-2024-3375 - Test Coverage - Info

Description: While the project benefits from a solid unit test coverage inherited from

Go-Ethereum and Prysm, deficiencies in coverage have been identified.

These shortcomings compromise the robustness of the codebase and

elevate the risk of potential security vulnerabilities.

To determine the coverage, the following commands can be utilized:

go test ./... -coverprofile cover.out

go tool cover -func cover.out

The breakdown of code coverage across several selected folders that are

pivotal in the gwat implementation is as follows:

Component Coverage

core 47.8%

dag 9.3%

eth 26.7%

token 67.9%

validator 70.1%

It is noteworthy that core and eth folders, inherited from Go-Ethereum,

have notably lower coverage compared to the current geth

implementation, which stands at 62.0% for core and 51.9% for eth.

However, there is a notable issue within the test suite for the token

package, as a majority of the tests are failing. The failed tests include:

TestProcessorTransferFromOperationCall

TestProcessorMintOperationCall

TestProcessorTransferOperationCall

TestProcessorBurnOperationCall

TestProcessorApprovalForAllCall

TestProcessorIsApprovedForAll

TestProcessorPropertiesWRC20

TestProcessorApproveCall

Additionally, another critical area of concern is the dag component, which

represents a custom implementation for the BlockDAG logic. Deficiencies

or bugs within this area could significantly undermine the network's

correct operation.

While the test coverage for validator is satisfactory, it still require further

enhancement to ensure comprehensive testing and robustness.

The code coverage breakdown for essential folders in the coordinator

implementation is as follows:

33

https://portal.hacken.io/App/Projects/Details/931612f8-fb8f-4486-aaa1-bccb859ec5de/Finding/e2a69106-1882-4b1b-970d-01c7c1d16fc7


Component Coverage

beacon-chain 58.6%

validator 61.4%

Although these components maintain satisfactory coverage levels, there is

room for improvement to ensure comprehensive testing of critical

functionalities.

Assets:
Test coverage

Status: Accepted

Recommendations

Remediation: To enhance the project's reliability and security, it is essential to

strengthen the existing test suite.

Enhance Test Coverage: Expand the test suite to comprehensively cover

critical functions. Emphasize implementing a substantial number of unit

tests for the dag component to ensure the accuracy of the BlockDAG

logic. Although token and validator coverages are adequate, there is still

room for improvement.

Address Failing Tests: Resolve issues contributing to test failures,

thereby ensuring a stable and reliable testing environment while

increasing overall test coverage.

Ensure Comprehensive Testing: Ensure that all pivotal functions and

components, particularly those integral to the BlockDAG logic, undergo

thorough testing. This encompasses both the existing functionality and

any future updates to the system.

Implementing these recommendations will elevate the project's overall

code quality, align it with established best practices in software

development, and enhance its reliability and security posture. Moreover, it

will instill confidence in stakeholders and users alike, ensuring a robust

and dependable system.

34



Appendix 1. Severity Definitions

Severity Description

Critical

Vulnerabilities that can lead to a complete breakdown of the blockchain network's

security, privacy, integrity, or availability fall under this category. They can disrupt the

consensus mechanism, enabling a malicious entity to take control of the majority of

nodes or facilitate 51% attacks. In addition, issues that could lead to widespread crashing

of nodes, leading to a complete breakdown or significant halt of the network, are also

considered critical along with issues that can lead to a massive theft of assets. Immediate

attention and mitigation are required.

High

High severity vulnerabilities are those that do not immediately risk the complete security

or integrity of the network but can cause substantial harm. These are issues that could

cause the crashing of several nodes, leading to temporary disruption of the network, or

could manipulate the consensus mechanism to a certain extent, but not enough to

execute a 51% attack. Partial breaches of privacy, unauthorized but limited access to

sensitive information, and affecting the reliable execution of smart contracts also fall

under this category.

Medium

Medium severity vulnerabilities could negatively affect the blockchain protocol but are

usually not capable of causing catastrophic damage. These could include vulnerabilities

that allow minor breaches of user privacy, can slow down transaction processing, or can

lead to relatively small financial losses. It may be possible to exploit these vulnerabilities

under specific circumstances, or they may require a high level of access to exploit

effectively.

Low

Low severity vulnerabilities are minor flaws in the blockchain protocol that might not have

a direct impact on security but could cause minor inefficiencies in transaction processing

or slight delays in block propagation. They might include vulnerabilities that allow

attackers to cause nuisance-level disruptions or are only exploitable under extremely rare

and specific conditions. These vulnerabilities should be corrected but do not represent an

immediate threat to the system.

35



Appendix 2. Scope

The scope of the project includes the following components from the provided repository:

Scope

Details

Repository
https://gitlab.waterfall.network/waterfall/protocol/coordinator,

https://gitlab.waterfall.network/waterfall/protocol/gwat

Commit
9b3570c351d927004e4c5da26f908fda5f6ce65a,

6782049b74c92e58a8ca077a3015ec67dc7ef943

Whitepaper https://waterfall.network/wp-content/uploads/2023/09/Whitepaper.pdf

Components in Scope

coordinator

security related issues reported in prysm after v2.1.1

validator module

beacon-chain/core module

beacon-chain/blockchain module

beacon-chain/rpc module

beacon-chain/state module

beacon-chain/p2p module

beacon-chain/powchain module

beacon-chain/forkchoice module

beacon-chain/sync module

gwat

security related issues reported in geth after v1.10.11

core module

eth module

token module

validator module

36

https://gitlab.waterfall.network/waterfall/protocol/coordinator
https://gitlab.waterfall.network/waterfall/protocol/gwat
https://waterfall.network/wp-content/uploads/2023/09/Whitepaper.pdf



