
Smart Contract Code Review

And Security Analysis Report

Customer: FatBoy

Date: 01/07/2024

We express our gratitude to the FatBoy team for the collaborative engagement that enabled the execution of

this Smart Contract Security Assessment.

Document

Name Smart Contract Code Review and Security Analysis Report for FatBoy

Audited By Carlo Parisi, Viktor Raboshchuk

Approved By Przemyslaw Swiatowiec

Website https://fatboygame.io/

Changelog 21/06/2024 - Preliminary Report -02/07/24 - Final Report

Platform Arbitrum One, Ethereum, BNB Chain

Language Solidity

Tags Presale

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://gitlab.cleevio.cz/cleeviox/backend/fatboy-presale-sc

Commit 7a0f4875cf7366846c1f145d48054b9d5c511798

2

https://fatboygame.io/
https://hackenio.cc/sc_methodology
https://gitlab.cleevio.cz/cleeviox/backend/fatboy-presale-sc

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the report

10 5 0 5
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 1

High 5

Medium 2

Low 1

Vulnerability Status

F-2024-3962 - Contract Funds Can be Drained due to Wrong Cost Calculations Mitigated

F-2024-3964 - Incorrect Definition of Stablecoins Decimal Mitigated

F-2024-4001 - Missing Threshold Leading to Possible Draining of Funds Mitigated

F-2024-4003 - Potential Loss of Purchased Tokens Due to Insufficient Payment Validation in _getTokensForCost Function Mitigated

F-2024-4006 - Missing On-Chain Bonus Tokens for Referrer in _processReferralBonus Mitigated

F-2024-3958 - Missing Checks for Zero Address Fixed

F-2024-3960 - Missing Old Values Update During Stablecoin Address Set Fixed

F-2024-3961 - Incorrect Decimal Assumption for ERC20 Tokens Causes Calculation Errors Fixed

F-2024-3963 - Denial of Service Attack Due to Decimals Calculations Fixed

F-2024-3997 - Hardcoded Price of Stablecoin Fixed

Documentation quality

Functional requirements are provided.

NatSpec is present.

Technical description is not provided.

Development environment is described.

Code quality

The code has sufficient quality.

Test coverage

Code coverage of the project is 83.59% (branch coverage).

Deployment and basic user interactions are covered with tests.

3

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/fa6db4a9-1111-4498-9b9f-0d8da4ee4ff5
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/7f240190-2a14-48ee-86a2-475e466dcc18
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/8f05edc9-f469-486e-99c8-490c80df14ee
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/d8204e1f-42c2-4b1e-a0e0-1740905c51a2
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/b65de073-87ca-4e21-b30a-950bb9079935
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/e253e2e7-3a2c-4abd-900c-01d0b043a7f8
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/715de51a-3952-4c24-9815-b0545adc6de3
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/25e0d461-d25d-4804-90b6-b069f107040d
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/c88b1e05-7871-401c-8f53-e39f31e2a911
https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/0ba03fac-1107-45ef-9d2f-a7e3b095094b

Table of Contents

System Overview 5

Privileged Roles 5

Risks 6

Findings 7

Vulnerability Details 7

Observation Details 26

Disclaimers 31

Appendix 1. Severity Definitions 32

Appendix 2. Scope 33

System Overview

FatBoy is a presale protocol with the following contracts:

PresaleClaiming - is a smart contract designed for managing the presale and claiming process of tokens. It

integrates functionalities for buying tokens during a presale period, applying referral and volume bonuses, and

facilitating the claiming of purchased tokens after the presale ends. This contract is upgradeable and uses a

proxy pattern for deployment.

ReferralUSDTRewards.sol - is a smart contract that allows users to claim USDT rewards based on a Merkle

proof, which verifies their eligibility and the amount claimed, with additional functionalities for setting the

Merkle root by authorized server addresses and emergency withdrawals by the contract owner.

IClaiming.sol - interface for the PresaleClaiming contract.

IPresale.sol - interface for the PresaleClaiming contract.

Privileged roles

The owner of the PresaleClaiming contract can set referral bonus tiers, enable/disable referral bonuses,

toggle volume buy bonuses, configure volume buy bonus tiers, change presale states, activate/deactivate

claiming, set the treasury wallet and stable coin addresses (USDC and USDT), establish a minimum

purchase amount, set the claimable token and withdraw tokens from the contract.

Accounts with SERVER_ROLE in the PresaleClaiming contract can set the presale phase.

The owner of the ReferralUSDTRewards contract can withdraw tokens from the contract.

Accounts with SERVER_ROLE in ReferralUSDTRewards contract can set the Merkle root.

5

Risks

The project utilizes Solidity version 0.8.20 or higher, which includes the introduction of the PUSH0 (0x5f)

opcode. This opcode is currently supported on the Ethereum mainnet but may not be universally supported

across other blockchain networks. Consequently, deploying the contract on chains other than the Ethereum

mainnet, such as certain Layer 2 (L2) chains or alternative networks, might lead to compatibility issues or

execution errors due to the lack of support for the PUSH0 opcode. In scenarios where deployment on

various chains is anticipated, selecting an appropriate Ethereum Virtual Machine (EVM) version that is

widely supported across these networks is crucial to avoid potential operational disruptions or deployment

failures.

A potential risk exists with the contract being centralized around the setter for the

currentPresalePhaseIndex. If the server role does not set this value accurately and in a timely manner, it

could affect token distribution.

A potential risk exists with the emergencyWithdrawToken function, which can only withdraw

claimableToken. In an emergency, no other tokens can be withdrawn using this function, except for native

tokens, which can be withdrawn using the emergencyWithdrawNativeCoin function. This limitation can

hinder access to other tokens during critical situations, affecting liquidity and operational flexibility.

PresaleClaiming.sol imports the AggregatorV3Interface from the Chainlink library, which is used to

interact with external data feeds. This introduces a risk as the contract is dependent on these external data

feeds for its operation. If these data feeds are compromised, manipulated, or become unavailable, it could

impact the functionality and security of the contract.

buyTokensWert in the contract PresaleClaiming.sol relies on wert, a third-party payment processor. This

introduces a risk as the contract's functionality is dependent on the reliability and security of this external

service. If wert is compromised, experiences downtime, or if its API changes unexpectedly, it could disrupt

the contract's operations.

The setPaymentToken function in the PresaleClaiming.sol contract checks the decimal places of a

payment token when it is added as a payment method. If a non-standard token changes its decimal places

after being added, the contract does not have a mechanism to re-validate or remove this token. This could

lead to potential issues with transactions, as the contract assumes a fixed decimal place for each token.

The current implementation of MerkleProof.sol in the OpenZeppelin library exhibits a vulnerability when

handling leaf data that is exactly 64 bytes in size. This issue, detailed in Issue #278 from the sherlock-audit

repository, enables an attacker to bypass the merkle-tree proof, leading to a security risks if the leaves are

not built carefully. Additionally, this vulnerability is acknowledged with a warning in the MerkleProof.sol

contract(#3091).

6

https://github.com/sherlock-audit/2023-04-footium-judging/issues/278
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3091

Findings

Vulnerability Details

F-2024-3964 - Incorrect Definition of Stablecoins Decimal - Critical

Description: The contract relies on the assumption that _STABLE_COIN_DECIMALS represents

the number of decimals for stablecoins like USDT and USDC. This assumption is

used in important protocol functions:

 uint8 private constant _STABLE_COIN_DECIMALS = 6;

 function _computeExchangeRate(address paymentToken) private view returns (uint256 exchangeRate

 if (paymentToken != address(0) && _isStableCoin(paymentToken)) {

 exchangeRate = _ONE_ETHER;

 decimals = _STABLE_COIN_DECIMALS;

 } else {

 exchangeRate = _getExchangeRate(paymentToken);

 decimals = _BASE_DECIMALS;

 }

 }

 function _getReferralBonusTokens(

 uint256 tokensBought,

 uint256 usdAmount

) private view returns (uint256 referrerBonusUsdt, uint256 referredBonusTokens){

 referrerBonusUsdt = ((usdAmount * referrerPercentage) / _PERCENTAGE_DIVISOR) / (10 ** (_BA

 }

This assumption holds true on Ethereum's chain but may not be consistent across

other EVM-compatible blockchains. For instance, on Binance Smart Chain (BSC),

the most widely used versions of USDT and USDC indeed have 18 decimals.

It should be noted that it is planned to deploy the PresaleClaiming contract on

the BSC chain. Incorrect stablecoin decimals can lead to miscalculations and

disrupt contract functionality, potentially leading to financial losses.

Status: Mitigated

Classification

Impact: 5/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Simple

Severity: Critical

Recommendations

Remediation: To mitigate these risks, it is crucial for the contract to validate the decimal

assumptions based on the specific blockchain being used. Implementing robust

checks and validations ensures compatibility across different EVM chains

maintains contract reliability.

7

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/7f240190-2a14-48ee-86a2-475e466dcc18

Resolution: Remediation (revised commit: 3c55e84f): The issue has been mitigated due

to the client's comment:

“There will be no usage of USDT and USDC stable coins on BSC main net. The

issue is fixed by checking if they stable coin has 6 decimals and other other

payment tokens have 18 decimals.”

8

F-2024-3961 - Incorrect Decimal Assumption for ERC20 Tokens Causes

Calculation Errors - High

Description: The PresaleClaiming smart contract is designed to manage the presale and

claiming process of tokens, This contract allows token purchases using native

cryptocurrency or ERC20 tokens, applies referral and volume bonuses, and

facilitates the claiming of purchased tokens after the presale.

In the getCost(), _buyTokensWithERC20(), and _computeExchangeRate()

functions, the contract assumes that non-stablecoin payment tokens have 18

decimals. However, this assumption is not universally applicable to all tokens.

When the payment token's decimal precision deviates from the expected 18

decimals (_BASE_DECIMALS), the contract's calculations are significantly

impacted. This discrepancy results in inaccurate computations for cost and

receivable tokens. In extreme cases, where the token's decimals differ greatly

from the expected value, these miscalculations can severely disrupt the

contract's operations:

Inaccurate Cost Calculations: The user may be overcharged or

undercharged when buying tokens.

Incorrect Token Allocation: Users may receive more or fewer tokens than

they are entitled to.

Operational Disruption: Significant deviations in decimal precision can

lead to the contract malfunctioning, affecting the overall presale and claiming

process.

It should be noted that only whitelisted tokens can be used for purchase

operation, whitelisting operation is performed by the contract owner.

The _computeExchangeRate the function is returning hardcoded

_BASE_DECIMALS, then these hardcoded decimals impact the cost of the token

calculated by the _buyTokensWithERC20 function:

function buyTokens(

 string calldata _referralCode,

 bytes32[] calldata _merkleProofReferral,

 uint256 _amountToBuy,

 address _paymentTokenAddress

) external payable override withPresaleActive {

 uint256 valueSent = msg.value;

 address user = msg.sender;

 (uint256 exchangeRate, uint8 decimals) = _computeExchangeRate(_paymentTokenAddress);

 ...

 else if (isSupportedPaymentToken[_paymentTokenAddress]) {

 IERC20 paymentToken = IERC20(_paymentTokenAddress);

 _buyTokensWithERC20(paymentToken, _amountToBuy, cost, user, decimals, bonusTokens, usdAm

...

function _computeExchangeRate(address paymentToken) private view returns (uint256 exchangeRate,

if (paymentToken != address(0) && _isStableCoin(paymentToken)) {

 exchangeRate = _ONE_ETHER;

 decimals = _STABLE_COIN_DECIMALS;

} else {

 exchangeRate = _getExchangeRate(paymentToken);

 decimals = _BASE_DECIMALS;

}

}

function _buyTokensWithERC20(

9

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/25e0d461-d25d-4804-90b6-b069f107040d

...

) private {

 tokensSold += tokensBought;

 tokensInfoPerPhase[currentPresalePhaseIndex].tokensSold += tokensBought;

 if (decimals < _BASE_DECIMALS) {

 cost = cost / 10 ** (_BASE_DECIMALS - decimals);

 }

 paymentToken.safeTransferFrom(user, treasuryWallet, cost);

Status: Fixed

Classification

Impact: 5/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

Remediation: It is recommended either to:

fix aforementioned functions to include specific token decimals,

or to enhance the setPaymentToken() function by adding a check to ensure

that any token being added has exactly 18 decimals.

Resolution: Remediation (revised commit: 3c55e84f): Check for exactly 18 decimals is

provided in the setPaymentToken function.

10

F-2024-3962 - Contract Funds Can be Drained due to Wrong Cost Calculations

- High

Description: The security vulnerability was observed in a situation when the calculated cost

becomes very low due to adjustments for decimals, especially when decimals of

paymentToken are less than _BASE_DECIMALS. In such cases, the following

formula is used:

_BASE_DECIMALS: cost / 10 ** (_BASE_DECIMALS - decimals).

If the initial cost calculation results in a value below a certain threshold, dividing

it by a large number can reduce the cost to zero or near-zero, enabling users to

acquire tokens without proper payment.

 function getCost(

) external view returns (uint256 cost, uint256 tokensBought, uint256 usdAmount, uint256 volu

 uint256 exchangeRate;

 uint256 decimals = _BASE_DECIMALS;

 if (decimals < _BASE_DECIMALS) {

 cost = cost / 10 ** (_BASE_DECIMALS - decimals);

 }

 }

 function _buyTokensWithERC20(

) private {

 if (decimals < _BASE_DECIMALS) {

 cost = cost / 10 ** (_BASE_DECIMALS - decimals);

 }

 paymentToken.safeTransferFrom(user, treasuryWallet, cost);

 }

For example, when a payment token has 18 decimals and a stablecoin has 6

decimals, if the calculated cost falls below 10**12 in the token's native decimals,

then the cost would be equal 0 due to Solidity division truncation. In a such

scenario, users could potentially acquire tokens without transferring any ERC20

tokens.

This vulnerability undermines the integrity of the presale process by allowing

users to drain the contract's funds without genuine payment, posing significant

financial risks.

Status: Mitigated

Classification

Impact: 5/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

11

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/fa6db4a9-1111-4498-9b9f-0d8da4ee4ff5

Remediation: Ensure that the adjusted cost remains above a minimum acceptable threshold

after division. This can be achieved using a require statement to validate the

adjusted cost is greater than zero.

Resolution: Remediation (revised commit: 3c55e84f): The issue has been mitigated due

to the client's comment:

"There will be minimum payment by a user, which is set to 48 $. Cost of 1 token

is 0.016-0.030 $. The minimum threshold is calculated before the transfer of the

funds but for extra insurance we added a check to ensure the result cost is above

0."

12

F-2024-3997 - Hardcoded Price of Stablecoin - High

Description: The _computeExchangeRate() function currently hardcodes the exchange rate of

stablecoins to 1 ether, assuming a fixed value that does not necessarily match

the real-time market price of these stablecoins. This means that regardless of the

actual market value of the stablecoin (e.g., USDT or USDC), the contract always

treats 1 dollar as equivalent to 1 stablecoin. When the stablecoin's actual value

deviates from 1 dollar (depeg scenario), transactions involving stablecoins could

be severely mispriced.

uint256 private constant _ONE_ETHER = 1 ether;

if (paymentToken != address(0) && _isStableCoin(paymentToken)) {

 exchangeRate = _ONE_ETHER;

 decimals = _STABLE_COIN_DECIMALS;

}

Status: Fixed

Classification

Impact: 5/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

Remediation: To mitigate this issue, the contract should dynamically fetch exchange rates from

reliable oracles and parameterize decimals based on the token's specifications.

This approach ensures that the contract accurately reflects real-world values and

remains resilient to price fluctuations in stablecoins and other tokens.

Resolution: Remediation (revised commit: 3c55e84f): The price of the stablecoins is not

hardcoded anymore and is retrieved using an oracle.

13

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/0ba03fac-1107-45ef-9d2f-a7e3b095094b

F-2024-4001 - Missing Threshold Leading to Possible Draining of Funds - High

Description: There is a critical vulnerability in the _getCostForTokens function of the smart

contract. If the product of tokensToBuy and tokensPrice is less than the

exchangeRate, the calculated cost becomes zero, which could allow an attacker

to drain the contract's funds.

The vulnerability arises when the calculated tokensToBuy * tokensPrice falls

below the exchangeRate, causing the cost to be incorrectly set to zero due to

integer division in Solidity. Exploiting this flaw could enable an attacker to drain

the contract's funds by making minimal token purchases, potentially leading to

substantial financial losses.

function _getCostForTokens(

 uint256 tokensToBuy,

 uint256 exchangeRate

) private view returns (uint256 cost) {

 cost = tokensToBuy * tokensInfoPerPhase[currentPresalePhaseIndex].tokensPrice / exchangeRate

}

Status: Mitigated

Classification

Impact: 5/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: High

Recommendations

Remediation: Consider implementing a minimum purchase requirement threshold to ensure

that the calculated cost is always non-zero. This can prevent the contract from

being drained by small token purchases that exploit this vulnerability.

Resolution: Remediation (revised commit: 3c55e84f): The issue has been mitigated due

to the client's comment:

"There will be minimum payment by a user, which is set to 48 $. Cost of 1 token

is 0.016-0.030 $. The minimum threshold is calculated before the transfer of the

funds but for extra insurance we added a check to ensure the result cost is above

0."

14

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/8f05edc9-f469-486e-99c8-490c80df14ee

F-2024-4003 - Potential Loss of Purchased Tokens Due to Insufficient Payment

Validation in _getTokensForCost Function - High

Description: The _getTokensForCost function has an issue that can result in users receiving 0

tokens if the product of exchangeRate * amountToPay is less than tokensPrice.

This bug could lead to significant losses for users who make purchases and

receive no tokens in return, while the contract itself does not suffer any loss of

funds.

function _getTokensForCost(

 uint256 amountToPay,

 uint256 exchangeRate

) private view returns (uint256 tokensBought) {

 tokensBought = exchangeRate * amountToPay / tokensInfoPerPhase[currentPresalePhaseIndex].tok

}

The vulnerability occurs when the product of exchangeRate * amountToPay is

less than tokensPrice. Due to integer division truncation in Solidity, the division

exchangeRate * amountToPay / tokensPrice results in zero, causing

tokensBought to be 0. As a result, no tokens are allocated to the user for their

payment. If exploited, this vulnerability can lead to financial losses for users who

make payments expecting to receive tokens in return.

Status: Mitigated

Classification

Impact: 4/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

Remediation: To fix the issue in the _getTokensForCost function, ensure that the calculation

results in a meaningful number of tokens for the user's payment.

Resolution: Remediation (revised commit: 3c55e84f): The issue has been mitigated due

to the client's comment:

"The provided input exchange rate is always with 18 decimals and there is a

check in the _getExchangeRate() function to be above 0. More checks in the

_getExchangeRate were added to ensure the call reverts if we don't get

exchangeRate. Token Price will always be between 16e15 - 30e15 inclusively,

therefore the tokensBought can't fall to 0 if the user provides funds"

15

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/d8204e1f-42c2-4b1e-a0e0-1740905c51a2

F-2024-3963 - Denial of Service Attack Due to Decimals Calculations -

Medium

Description: In the _getExchangeRate() function, there is a critical vulnerability due to

comparing two constants: BASE_DECIMALS and the decimals value from the

ERC20 contract.

The _getExchangeRate function is designed to return a value called

exchangeRateDecimals, which represents the exchange rate of a specified

payment token or the native coin. This exchangeRateDecimals calculation

adjusts the result according to the difference between the base decimals and the

token-specific decimals:

exchangeRateDecimals = uint256(exchangeRate) * 10 ** (_BASE_DECIMALS - decimals);

This poses a significant risk of a Denial of Service (DOS) attack, particularly if the

payment token's decimals value exceeds the standard limit of 18. If the token's

decimals value is higher than BASE_DECIMALS, it will cause an underflow when

subtracting from 18, leading to a DOS.

Status: Fixed

Classification

Impact: 4/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Medium

Severity: Medium

Recommendations

Remediation: To safeguard against such attacks, implement a compatibility check during the

token registration process to ensure that only tokens with a decimals value less

than or equal to BASE_DECIMALS are allowed. This ensures that no incompatible

tokens can cause underflow issues during exchange rate calculations. Or adjust

the exchange rate logic to handle different decimals values dynamically. Instead

of relying on a constant subtraction, use a more flexible approach that can adapt

to various token decimal configurations.

Resolution: Remediation (revised commit: 3c55e84f): A new check is present in the

setPaymentToken() function that does not allow to enable tokens that have less

or more than BASE_DECIMALS.

function setPaymentToken(address _paymentToken, bool enabled) external onlyRole(DEFAULT_ADMIN_RO

 if (ERC20(_paymentToken).decimals() != _BASE_DECIMALS) {

 revert InvalidPaymentTokenError(_paymentToken);

 }

 isSupportedPaymentToken[_paymentToken] = enabled;

 emit PaymentTokenSetEvent(_paymentToken, enabled);

 }

16

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/c88b1e05-7871-401c-8f53-e39f31e2a911

F-2024-4006 - Missing On-Chain Bonus Tokens for Referrer in

_processReferralBonus - Medium

Description: There is a critical issue in the _processReferralBonus function where referrer

bonuses are not distributed on-chain, unlike the bonuses for referred users. The

relevant code segment is:

if (referrerBonusUsdt > 0) {

 emit ReferrerBonusEvent(referrerBonusUsdt, block.timestamp, currentPresalePhaseIndex, referr

}

if (referredBonusTokens > 0) {

 bonusTokens = referredBonusTokens;

 _awardBonusTokens(referredBonusTokens, user);

}

The vulnerability arises from discrepancies in how bonus tokens are handled

between referrers and referred users. While referred users receive their bonus

tokens directly through the _awardBonusTokens function, referrers only get an

event emission (ReferrerBonusEvent) without actual token distribution on-chain.

Status: Mitigated

Classification

Impact: 3/5

Likelihood: 4/5

Exploitability: Semi-Dependent

Complexity: Medium

Severity: Medium

Recommendations

Remediation: To mitigate this vulnerability, ensure both referrerBonusUsdt and

referredBonusTokens are consistently awarded on-chain according to the

intended logic.

Resolution: Remediation (revised commit: 3c55e84f): This issue is mitigated due to the

client's comment:

"The distribution of the referrer rewards is in USDT stable coin on the Arbitrum

One chain, which aggregates all referrer bonus tokens from other deployments.

Another application monitors these referrer bonus events and updates merkleroot

in the ReferralUSDTRewards contract, which is deployed on ARB chain. To

implement distribution of USDT rewards on chain is a cross chain operation

which cannot be solved easily"

17

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/b65de073-87ca-4e21-b30a-950bb9079935

F-2024-3960 - Missing Old Values Update During Stablecoin Address Set - Low

Description: The PresaleClaiming.sol contract has functions setUsdcStableCoinAddress()

and setUsdtStableCoinAddress() to set the addresses of USDC and USDT

stablecoins respectively. These addresses are marked as supported payment

tokens in the isSupportedPaymentToken[] mapping. However, if these functions

are called more than once with different addresses, the old addresses are not

deactivated in the mapping. This means that the old addresses are still marked

as supported payment tokens, potentially leading to unexpected behavior or

security issues.

function setUsdcStableCoinAddress(address _usdcStableCoinAddress) external onlyOwner {

 usdcStableCoinAddress = _usdcStableCoinAddress;

 isSupportedPaymentToken[_usdcStableCoinAddress] = true;

 emit PaymentTokenSetEvent(_usdcStableCoinAddress, true);

}

function setUsdtStableCoinAddress(address _usdtStableCoinAddress) external onlyOwner {

 usdtStableCoinAddress = _usdtStableCoinAddress;

 isSupportedPaymentToken[_usdtStableCoinAddress] = true;

 emit PaymentTokenSetEvent(_usdtStableCoinAddress, true);

}

Status: Fixed

Classification

Impact: 2/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: To ensure that these previous addresses are no longer recognized as supported

payment tokens, it is recommended to set the old address values to false in the

isSupportedPaymentToken mapping. This step will effectively remove the old

addresses from the list of valid payment tokens, maintaining the integrity and

accuracy of the supported payment tokens list.

Resolution: Remediation (revised commit: 3c55e84f): The old value for

isSupportedPaymentToken is now set to false.

18

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/715de51a-3952-4c24-9815-b0545adc6de3

F-2024-3958 - Missing Checks for Zero Address - Info

Description: In Solidity, the Ethereum address

0x00 is known as the "zero

address". This address has significance because it is the default value for

uninitialized address variables and is often used to represent an invalid or non-

existent address. The "

Missing zero address control" issue arises when a Solidity smart contract does not

properly check or prevent interactions with the zero address, leading to

unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address without

any checks, which essentially burns those tokens as they become irretrievable.

While sometimes this is intentional, without proper control or checks, accidental

transfers could occur.

The following methods should introduce zero address checks:

PresaleClaiming.sol: updateTreasuryWallet(), setHotWalletAddress(),

setEstimationAddress(), initialize(), _initializeTreasuryWallet(),

_initializePayment()

ReferralUSDTRewards.sol: constructor,

Status: Fixed

Classification

Impact: 1/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Info

Recommendations

Remediation: It is strongly recommended to implement checks to prevent the zero address

from being set during the initialization of contracts. This can be achieved by

adding require statements that ensure address parameters are not the zero

address.

19

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/e253e2e7-3a2c-4abd-900c-01d0b043a7f8

Observation Details

F-2024-3968 - Incorrect Total USD Amount Raised Calculation - Info

Description: In lines 196 and 246 of the PresaleClaiming.sol contract, there is an issue

where the bonus referral amount paid to the referrer is incorrectly added to the

totalUsdAmountRaised. The amount raised should not increase when paying a

bonus, as this is not new USD being raised but USD being paid out by the system.

(uint256 bonusTokens, bool isValidProof) = _processBonuses(_referralCode, _merkleProofReferral,

usdAmount += _computeUsdAmount(bonusTokens);

totalUsdAmountRaised += usdAmount;

Status: Accepted

Recommendations

Remediation: Consider removing the bonus referral amount from totalUsdAmountRaised by

updating it with only the actual USD amount paid by the user, ensuring accurate

tracking of funds.

20

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/16661ec1-f94c-47e4-a73c-bc179a7364f0

F-2024-4000 - Missing valueSent Check Before Buying Tokens - Info

Description: In buyTokensWert() before calling _buyTokensWithNativeCoin() there is no

check to ensure that valueSent higher/equal cost of tokens.

Here is the corresponding code:

function buyTokensWert(

 string calldata _referralCode,

 bytes32[] calldata _merkleProofReferral,

 address _userToBuyFor

) external payable withPresaleActive {

 uint256 valueSent = msg.value;

 if (valueSent == 0) {

 revert ZeroValueError();

 }

...

 _buyTokensWithNativeCoin(tokensBought, valueSent, user, bonusTokens, usdAmount, isValidProof

 emit TokensBoughtWertEvent(user, valueSent, tokensBought, currentPresalePhaseIndex, block.ti

}

function _buyTokensWithNativeCoin(

...

) withNativeCoinEnabled private {

 uint256 amountReceived = valueSent;

 tokensSold += tokensBought;

 tokensInfoPerPhase[currentPresalePhaseIndex].tokensSold += tokensBought;

 uint256 amountToSend = (amountReceived - cost > _RETURN_AMOUNT_THRESHOLD)

 ? cost

 : amountReceived;

 (bool sent,) = payable(treasuryWallet).call{value: amountToSend}("");

 ...

}

If the valueSend is less than a cost, then the transaction would fail in the

following line due to the underflow whereas it should return error that user send

less value than required:

uint256 amountToSend = (amountReceived - cost > _RETURN_AMOUNT_THRESHOLD)

 ? cost

 : amountReceived;

Status: Accepted

Recommendations

Remediation: Consider adding a check to ensure that the buyTokensWert function validates the

sufficiency of funds before proceeding with token purchases.

if (valueSent > 0 && _paymentTokenAddress == address(0)) {

 if (valueSent < cost) {

 revert InsufficientFundsError(cost, valueSent);

 }

 _buyTokensWithNativeCoin()

}

21

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/63a19304-3d63-42a7-8471-8da1a0c9283f

F-2024-4013 - Usage of Both Ownable and AccessControl Implementations -

Info

Description: The PresaleClaiming.sol and ReferralUSDTRewards.sol contracts currently

implement access control through mechanisms such as AccessControl and

Ownable. An optimization strategy worth considering involves potentially

removing the Ownable implementation to decrease gas consumption. This

approach is viable because both contracts already utilize AccessControl to

manage roles such as DEFAULT_ADMIN_ROLE and SERVER_ROLE. By consolidating

access control under AccessControl, redundant functionality provided by

Ownable can be eliminated, streamlining the contracts' architecture and

enhancing efficiency in gas usage.

Status: Fixed

Recommendations

Remediation: Consider removing the Ownable implementation. It may involve replacing the

onlyOwner modifier in protocol functions with role-based modifiers like

onlyRole(SERVER_ROLE) or onlyRole(DEFAULT_ADMIN_ROLE).

22

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/9a2fb1f0-cd19-4e76-ae30-3054371e7be9

F-2024-4014 - Missing UUPS Init Function Invocation - Info

Description: __UUPSUpgradeable_init() is missed in the initialize function of the

PresaleClaiming.sol contract.

Initializing every upgradeable contract ensures proper functioning, security, and

enables future upgrades by setting the initial state and preventing re-initialization

risks. This is particularly important for UUPS contracts, where initialization

establishes necessary configurations and mechanisms for upgradeability.

Despite not being a security vulnerability in this specific scenario, including the

__UUPSUpgradeable_init() call in the initialize function is considered best

practice. It ensures consistency and clarity, showing that the contract adheres to

the expected upgradeable pattern.

Status: Fixed

Recommendations

Remediation: It is recommended to include the __UUPSUpgradeable_init() call in the initialize

function of the PresaleClaiming.sol contract to adhere to best practices for

upgradeable contracts, ensuring clarity and future compatibility with

OpenZeppelin's libraries.

23

https://portal.hacken.io/App/Projects/Details/9d2245bb-f2bc-4022-bdd9-0126806812da/Finding/44a7c496-364e-4e58-9d56-c6e3bedd5164

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of

which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the

code. The report covers the code submitted and reviewed, so it may not be relevant after any modifications.

Do not consider this report as a final and sufficient assessment regarding the utility and safety of the code,

bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that

you should not rely on this report only — we recommend proceeding with several independent audits and a

public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language,

and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the

Consultant cannot guarantee the explicit security of the audited smart contracts.

24

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more

limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to

asset loss. Contradictions and requirements violations. Major deviations from best practices are

also in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality score.

25

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://gitlab.cleevio.cz/cleeviox/backend/fatboy-presale-sc

Commit 7a0f4875cf7366846c1f145d48054b9d5c511798

Whitepaper https://whitepaper.fatboygame.io/

Requirements https://gitlab.cleevio.cz/cleeviox/backend/fatboy-presale-sc/-/blob/main/README.md

Technical Requirements https://gitlab.cleevio.cz/cleeviox/backend/fatboy-presale-sc/-/blob/main/README.md

Contracts in Scope

./src/PresaleClaiming.sol

./src/ReferralUSDTRewards.sol

./src/interfaces/IClaiming.sol

./src/interfaces/IPresale.sol

26

https://gitlab.cleevio.cz/cleeviox/backend/fatboy-presale-sc
https://whitepaper.fatboygame.io/
https://gitlab.cleevio.cz/cleeviox/backend/fatboy-presale-sc/-/blob/main/README.md
https://gitlab.cleevio.cz/cleeviox/backend/fatboy-presale-sc/-/blob/main/README.md

