
Smart Contract Code

Review And Security

Analysis Report

Customer: Dropnest

Date: 04/07/2024

We express our gratitude to the Dropnest team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

The DropnestStaking protocol is a smart contract system for EVM chains. It is designed to

manage deposits for the Dropnest protocol and record the deposits via emitting events into

the blockchain. Deposited tokens are then sent to external protocols for farming.

Document

Name

Smart Contract Code Review and Security Analysis Report for

Dropnest

Audited By David Camps Novi, Viktor Lavrenenko

Approved By Przemyslaw Swiatowiec

Website https://www.dropnest.xyz/

Changelog 27/06/2024 - Preliminary Report; 04/07/2024 - Final Report

Platform Ethereum, Base, Optimism, Arbitrum, Linea, Blast, Polygon

Language Solidity

Tags Staking, Farming

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/Nest-Layer/dropnest-protocol-contracts/

Commit 60be644381df46440497434ab1900258b17e05fc

2

https://www.dropnest.xyz/
https://hackenio.cc/sc_methodology
https://github.com/Nest-Layer/dropnest-protocol-contracts/

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

1 1 0 0
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 0

Medium 0

Low 1

Vulnerability Status

F-2024-4044 - Use of transfer() to Send Native Assets may Revert Fixed

Documentation quality

Functional requirements are limited.

Basic system description is provided.

System roles are explained.

Technical description is complete.

NatSpec is provided.

Run instructions are present.

Code quality

The development environment is configured.

Inefficient gas model: F-2024-4045, F-2024-4050.

Best practices are followed.

Test coverage

Code coverage of the project is 94.4% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative cases coverage is extensively tested.

3

https://portal.hacken.io/App/Projects/Details/1f483d09-0b1c-4160-9f68-024bb9319fa6/Finding/6cdacc1b-5fd1-4ec0-a55c-3bd9bb689f33

Table of Contents

System Overview 5

Privileged Roles 5

Risks 6

Findings 7

Vulnerability Details 7

Observation Details 9

Disclaimers 19

Appendix 1. Severity Definitions 20

Appendix 2. Scope 21

System Overview

The DropnestStaking protocol is a smart contract system for EVM chains. It is designed to

manage deposits for the Dropnest protocol and record the deposits via emitting events into

the blockchain. Deposited tokens are then sent to external protocols for farming.

Staking: Users can stake their ETH or predetermined ERC20 tokens on a specific protocol.

The staked tokens are transferred to the farmer address of the protocol.

Multiple Staking: Users can also stake their ETH or ERC20 tokens on multiple protocols

at once. The total amount of tokens staked should be equal to the sum of the individual

amounts staked on each protocol.

Privileged roles

The owner of the contract can

Add new protocols or update the farmer address for existing ones.

Pause and unpause the contract.

Set the status of a protocol from active to inactive, and vice-versa.

5

Risks

The audited contract DropnestStaking is highly centralized, introducing single points of

failure and control. This centralization can lead to vulnerabilities in decision-making and

operational processes, making the system more susceptible to targeted attacks or

manipulation. The centralization is expressed by the reliance on the protocol owners for:

Tracking deposits from users into the protocol, and subsequent calculation and

management of staking rewards and users' funds, off-chain.

Managing interactions with the farming protocols used by the system, off-chain.

Pausing and unpausing the contract.

Adding and removing supported tokens.

Managing the farming protocols' statuses and addresses.

The digital contract architecture relies on administrative keys for critical operations.

Centralized control over these keys presents a significant security risk, as compromise or

misuse can lead to unauthorized actions or loss of funds. Such operations are:

Pause and unpause the contract.

Add and remove supported tokens.

Manage the farming protocols' statuses and addresses.

The implemented farmAddresses and supportedTokens logic highly depends on external

contracts not covered by the audit. This reliance introduces risks if these external

contracts are compromised or contain vulnerabilities, affecting the audited project's

integrity. More details about such contracts and their usage can be found in the project

README.

The DropnestStaking contract contains the staking functionality of the system, through

which users' deposits are tracked using the events Deposited and ERC20Deposited. The

amounts are tracked off-chain, where additional calculations take place in order to

complete the staking functionality (balance tracking, rewards, etc.).

Although the team does not currently plan to support fee-on-transfer tokens, if such kind

of tokens (or any other kind of token were the input amount and received amount could

be different) were introduced in the system, the off-chain part of the protocol should be

adapted. Otherwise, there could be mismatches between the tracked amount emitted by

the events and the actual transferred amount, resulting in wrong calculations and balance

tracking in the system. The project README provides further insights on this topic, where

the development team provided technical explanations and how they are resilient to these

kind of situations.

6

Findings

Vulnerability Details

F-2024-4044 - Use of transfer() to Send Native Assets may Revert

- Low

Description: The contract uses built-in transfer() function for transferring

native tokens.

The transfer() function was commonly used in earlier versions of

Solidity for its simplicity and automatic reentrancy protection.

However, it was identified as potentially problematic due to its fixed

gas limit of 2300.

The usage of transfer() function can lead to unintended function

call revert when the receiving contract's receive() or fallback()

functions require more than 2300 Gas for processing.

function _stake(uint256 protocolId, uint256 protocolAmount) private nonZeroAmount

 address to = farmAddresses[protocolId];

 if (to == address(0)) {

 revert DropnestStaking_ProtocolDoesNotExist();

 }

 if (!protocolStatus[protocolId]) {

 revert DropnestStaking_ProtocolInactive(protocolId);

 }

 emit Deposited(protocolId, msg.sender, to, protocolAmount);

 payable(to).transfer(protocolAmount);

}

Assets:

DropnestStaking.sol [https://github.com/Nest-Layer/dropnest-

protocol-contracts/]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 1/5

Exploitability: Independent

7

https://portal.hacken.io/App/Projects/Details/1f483d09-0b1c-4160-9f68-024bb9319fa6/Finding/6cdacc1b-5fd1-4ec0-a55c-3bd9bb689f33

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to use built-in call() function instead of

transfer() to transfer native assets. This method does not impose

a gas limit, it provides greater flexibility and compatibility with

contracts having more complex business logic upon receiving the

native tokens. When working with then call() function ensure that

its execution is successful by checking the returned boolean value. It

is also recommended to fallow the Check-Effects-Interactions (CEI)

pattern in every case to prevent reentrancy issues.

Resolution: Fixed in commit ID 84b8746: the project updated to built-in call()

function instead of transfer() to transfer native assets.

8

Observation Details

F-2024-4045 - Missing Check Results in Waste of Gas - Info

Description: The function removeSupportedToken() does not check whether the

token to remove was already added into the protocol list. Therefore,

the whole list of tokens may be iterated to fetch the token, and

waste Gas unnecessarily, if the token is not in the tokenList array.

function removeSupportedToken(address token) external onlyOwner {

 supportedTokens[token] = false;

 uint256 length = tokenList.length;

 for (uint256 i = 0; i < length; i++) {

 if (tokenList[i] == token) {

 tokenList[i] = tokenList[length - 1];

 tokenList.pop();

 break;

 }

 }

}

Assets:

DropnestStaking.sol [https://github.com/Nest-Layer/dropnest-

protocol-contracts/]

Status: Fixed

Recommendations

Remediation: Consider checking if the token to remove was added into

supportedTokens.

Resolution: Fixed in commit ID 84b8746: the modifier allowedToken was added

into the removeSupportedTokens() method.

9

https://portal.hacken.io/App/Projects/Details/1f483d09-0b1c-4160-9f68-024bb9319fa6/Finding/c69e59d8-6d33-4f5d-a90f-eaffa45527c7

F-2024-4048 - Single-Step Ownership Transfer Introduces Risks of

Losing Ownership - Info

Description: The project's contract DropnestStaking inherits OpenZeppelin's

Ownable functionality to handle the transfer of the contract's

ownership. However, the pattern used by Ownable is not considered

secure enough.

Ownable's ownership can mistakenly be transferred via

transferOwnership() to an address that cannot handle it.

abstract contract Ownable is Context {

 address private _owner;

 /**

 * @dev Transfers ownership of the contract to a new account (`newOwner`).

 * Can only be called by the current owner.

 */

 function transferOwnership(address newOwner) public virtual onlyOwner {

 if (newOwner == address(0)) {

 revert OwnableInvalidOwner(address(0));

 }

 _transferOwnership(newOwner);

 }

 /**

 * @dev Transfers ownership of the contract to a new account (`newOwner`).

 * Internal function without access restriction.

 */

 function _transferOwnership(address newOwner) internal virtual {

 address oldOwner = _owner;

 _owner = newOwner;

 emit OwnershipTransferred(oldOwner, newOwner);

 }

}

Assets:

DropnestStaking.sol [https://github.com/Nest-Layer/dropnest-

protocol-contracts/]

Status: Fixed

Recommendations

Remediation: Consider using Ownable2Step instead of Ownable from OpenZeppelin

Contracts to enhance the security of your contract ownership

10

https://portal.hacken.io/App/Projects/Details/1f483d09-0b1c-4160-9f68-024bb9319fa6/Finding/2b526ec8-fb47-4ef6-84dd-7416c36e6d77
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

management. These contracts prevent the accidental transfer of

ownership to an address that cannot handle it, such as due to a

typo, by requiring the recipient of owner permissions to actively

accept ownership via a contract call. This two-step ownership

transfer process adds an additional layer of security to your

contract's ownership management.

Resolution: The finding was resolved in commit ID 84b8746: the

DropnestStaking contract was modified and now using

Ownable2Step.sol instead of Ownable.sol.

11

F-2024-4049 - Minimum Staking Amount is not Compliant with

Documentation - Info

Description: The project's documentation found in ./README.md defines a

minimum deposit amount required for staking:

Staking: Users can stake their ETH or predetermined ERC20

tokens on a specific protocol. The staked tokens are

transferred to the farmer address of the protocol. The

amount of tokens to be staked should be equal to or more

than the minimum deposit amount.

However, no minimum deposit amount check is introduced in staking

methods.

function stakeERC20(uint256 protocolId, address token, uint256 amount) external w

 _stakeERC20(protocolId, token, amount);

}

function _stake(uint256 protocolId, uint256 protocolAmount) private nonZeroAmount

 address to = farmAddresses[protocolId];

 if (to == address(0)) {

 revert DropnestStaking_ProtocolDoesNotExist();

 }

 if (!protocolStatus[protocolId]) {

 revert DropnestStaking_ProtocolInactive(protocolId);

 }

 emit Deposited(protocolId, msg.sender, to, protocolAmount);

 payable(to).transfer(protocolAmount);//@audit-ok use call instead of transfe

}

Assets:

DropnestStaking.sol [https://github.com/Nest-Layer/dropnest-

protocol-contracts/]

Status: Fixed

Recommendations

Remediation: It is recommended to either introduce the aforementioned checks in

the code or to update the documentation so that the code is

compliant with the system requirements.

12

https://portal.hacken.io/App/Projects/Details/1f483d09-0b1c-4160-9f68-024bb9319fa6/Finding/56d40c06-a8d2-4c85-a2b9-11aab37089e4

Resolution: Fixed in commit ID 84b8746: the README was updated, removing

the aforementioned minimum staking requirement.

13

F-2024-4050 - Zero Address and Duplicated Entries can be Added

into tokenList and protocols Arrays - Info

Description: The Zero address (0x0) can be added into the tokenList in both the

constructor() and addSupportedToken() methods.

Additionally, there is no check to enforce that the same address is

not added twice in tokenList or protocols arrays.

constructor(address[] memory _supportedTokens, string[] memory _protocols, addres

 if (_protocols.length != _addresses.length) {

 revert DropnestStaking_ArraysLengthMismatch();

 }

 for (uint256 i = 0; i < _protocols.length; i++) {

 _addProtocol(_protocols[i], _addresses[i]);

 }

 for (uint256 i = 0; i < _supportedTokens.length; i++) {

 supportedTokens[_supportedTokens[i]] = true;

 tokenList.push(_supportedTokens[i]);

 }

}

function addSupportedToken(address token) external onlyOwner {

 if (supportedTokens[token]) {

 revert DropnestStaking_TokenAlreadySupported(token);

 }

 supportedTokens[token] = true;

 tokenList.push(token);

}

function _addProtocol(string memory protocolName, address to) private {

 if (to == address(0)) {

 revert DropnestStaking_ZeroAddressProvided();

 }

 protocolCounter++;

 protocols.push(protocolName);

 farmAddresses[protocolCounter] = to;

 protocolStatus[protocolCounter] = true;

 emit ProtocolAdded(protocolCounter, protocolName, to);

}

As a consequence, an extra amount of Gas will be wasted in order to

iterate through larger arrays in both removeSupportedTokens() and

addOrUpdateProtocol() methods.

14

https://portal.hacken.io/App/Projects/Details/1f483d09-0b1c-4160-9f68-024bb9319fa6/Finding/4664dc4c-9af8-4f6f-ac13-9ca51bca6819

function removeSupportedToken(address token) external onlyOwner {

 supportedTokens[token] = false;

 uint256 length = tokenList.length;

 for (uint256 i = 0; i < length; i++) {

 if (tokenList[i] == token) {

 tokenList[i] = tokenList[length - 1];

 tokenList.pop();

 break;

 }

 }

}

function addOrUpdateProtocol(string memory protocolName, address farmerAddress) e

 if (farmerAddress == address(0)) {

 revert DropnestStaking_ZeroAddressProvided();

 }

 uint256 length = protocols.length;

 for (uint256 i = 0; i < length; i++) {

 if (keccak256(abi.encodePacked(protocols[i])) == keccak256(abi.encodePack

 uint256 id = i + 1;

 farmAddresses[id] = farmerAddress;

 emit ProtocolUpdated(id, protocolName, farmerAddress);

 return;

 }

 }

 _addProtocol(protocolName, farmerAddress);

}

Assets:

DropnestStaking.sol [https://github.com/Nest-Layer/dropnest-

protocol-contracts/]

Status: Mitigated

Recommendations

Remediation: Consider adding a check to prevent from adding duplicates and the

zero address in the reported functions.

Resolution: Partially fixed in commit ID 84b8746:

Zero address checks were added into addSupportedToken() to

avoid including addreess(0) into the tokenList.

The constructor() was updated and now calls

addSupportedToken() in order to avoid duplicated entries and

the zero address.

15

No measures were taken to avoid protocol duplicates. The

development team accepted the finding and the risks arising

from it.

16

F-2024-4051 - Missing Events for Key Updates - Info

Description: Events allow capturing the changed parameters so that off-chain

tools/interfaces can register such changes with timelocks that allow

users to evaluate them and consider if they would like to engage/exit

based on how they perceive the changes as affecting the

trustworthiness of the protocol or profitability of the implemented

financial services. The alternative of directly querying the on-chain

contract state for such changes is not considered practical for most

users/usages.

The following functions do not emit any events:

addSupportedToken(), removeSupportedToken().

The absence of events in these functions means that there is no on-

chain traceability or transparency when the data is updated.

Assets:

DropnestStaking.sol [https://github.com/Nest-Layer/dropnest-

protocol-contracts/]

Status: Fixed

Recommendations

Remediation: To enhance transparency and traceability, it is recommended to emit

events in key functions. This will allow users and external services to

monitor and react to changes. Ensure that every critical action,

especially those modifying contract states or handling funds, emits

an event.

Resolution: Fixed in commit ID 84b8746: events were added to the reported

functions.

17

https://portal.hacken.io/App/Projects/Details/1f483d09-0b1c-4160-9f68-024bb9319fa6/Finding/e60d9d61-9a56-4fe3-a89d-cbdf4f465dd7

F-2024-4057 - Redundant Token Transfer Results in Waste of Gas -

Info

Description: The function _stakeERC20 performs two token transfers: the first

one to transfer tokens from the msg.sender to the main contract,

and the second to transfer the same tokens to the farmAddress.

Since there is no reason to perform the token transfer from the

sender to the farmAddress in a two-step process, the result of this

design pattern is only a waste of gas. Additionally, if working with

fee-on-transfer tokens, it would result in paying twice the fee.

function _stakeERC20(uint256 protocolId, address tokenAddress, uint256 amount) p

 if (tokenAddress == address(0)) {

 revert DropnestStaking_ZeroAddressProvided();

 }

 if (!protocolStatus[protocolId]) {

 revert DropnestStaking_ProtocolInactive(protocolId);

 }

 address to = farmAddresses[protocolId];

 if (to == address(0)) {

 revert DropnestStaking_ProtocolDoesNotExist();

 }

 IERC20(tokenAddress).safeTransferFrom(msg.sender, address(this), amount);

 IERC20(tokenAddress).safeTransfer(to, amount);

 emit ERC20Deposited(protocolId, tokenAddress, msg.sender, to, amount);

}

Assets:

DropnestStaking.sol [https://github.com/Nest-Layer/dropnest-

protocol-contracts/]

Status: Fixed

Recommendations

Remediation: Perform a single transfer from the msg.sender to the farmAddress.

Resolution: Fixed in commit ID 84b8746: the code was updated to perform a

single token transfer.

18

https://portal.hacken.io/App/Projects/Details/1f483d09-0b1c-4160-9f68-024bb9319fa6/Finding/d6a05905-9194-46d6-b009-b9cb3a718f54

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

19

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution, do not affect security score but

can affect code quality score.

20

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/Nest-Layer/dropnest-protocol-contracts/

Commit 60be644381df46440497434ab1900258b17e05fc

Remediation commit 84b87464abb914394f1099916841864189107472

Whitepaper N/A

Requirements ./README

Technical Requirements ./README

Contracts in Scope

./src/DropnestStaking.sol

21

https://github.com/Nest-Layer/dropnest-protocol-contracts/

