
Smart Contract Code

Review And Security

Analysis Report

Customer: Rebalance

Date: 27/06/2024

We express our gratitude to the Rebalance team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

The Rebalance Lending System is a set of smart contracts designed for managing and generating

yield on assets deposited by users. It provides a vault-like structure where users can deposit assets,

receive tokenized shares representing their stake, and earn interest from various yield-generating

providers.

Document

Name Smart Contract Code Review and Security Analysis Report for Rebalance

Audited By Kaan Caglan

Approved By Ataberk Yavuzer

Website https://www.rebalance.finance/

Changelog 25/06/2024 - Preliminary Report

27/06/2024 - Final Report

Platform EVM

Language Solidity

Tags Lending, ERC20

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/REBALANCE-Finance/lending-contracts

Commit dd4033d

2

https://www.rebalance.finance/
https://hackenio.cc/sc_methodology
https://github.com/REBALANCE-Finance/lending-contracts

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the report

1 0 1 0
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 0

Medium 1

Low 0

Vulnerability Status

F-2024-3983 - Fee-on-Transfer Accounting-Related Issues Accepted

Documentation quality

Functional requirements are missed.

Technical description is not provided.

Code quality

Some of the best practices are missing.

Test coverage

Code coverage of the project is 90.96% (branch coverage),.

Not all branches are covered with tests.

3

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/068fda08-d9e5-45ae-a73b-99b26f467c7a

Table of Contents

System Overview 5

Risks 7

Findings 8

Vulnerability Details 8

Observation Details 10

Disclaimers 20

Appendix 1. Severity Definitions 21

Appendix 2. Scope 22

System Overview

The Rebalance Lending System is a set of smart contracts designed for managing and generating

yield on assets deposited by users. It provides a vault-like structure where users can deposit assets,

receive tokenized shares representing their stake, and earn interest from various yield-generating

providers. The system also includes functionality for locking tokens, managing vaults, and interacting

with yield providers.

Contracts

InterestVaultV1

Definition: An abstract ERC4626-compliant vault contract defining common functions and

interfaces for all vault types.

Functions:

deposit, mint, withdraw, redeem: Basic ERC4626 functions for managing user deposits

and withdrawals.

initializeVaultShares: Initializes vault shares with a specified amount of assets.

setActiveProvider, setDepositLimits, setTreasury, setWithdrawFee,

setMinAmount: Admin functions for setting various parameters.

rebalance: Rebalances assets across providers.

Attributes:

_asset: The main ERC20 asset managed by this vault.

_underlyingDecimals: Decimals of the underlying asset.

_providers: Array of yield providers.

activeProvider: Currently active provider for yield generation.

minAmount, vaultDepositLimit, userDepositLimit, withdrawFeePercent, treasury:

Configuration parameters for deposits and withdrawals.

initialized: Boolean indicating if the vault has been initialized.

Privileged Roles:

DEFAULT_ADMIN_ROLE: Full administrative access.

REBALANCER_ROLE: Role allowed to perform rebalancing operations.

InterestLocker

Definition: A contract to lock and unlock ERC20 tokens, intended for locking rebalancer tokens.

Functions:

lockTokens: Allows users to lock tokens for a specified duration.

unlockTokens: Allows users to unlock tokens after the lock duration has passed.

setTokens: Admin function to set supported tokens.

Attributes:

MIN_DURATION: Minimum duration for locking tokens (30 days).

nextLockId: Incremental ID for tracking locks.

_tokens: Array of supported tokens.

lockInfo: Mapping of lock ID to lock information.

_beneficiaries: Mapping of lock ID to beneficiary address.

_totalLocked: Mapping of token address to total locked amount.

Privileged Roles:

5

owner: Only the contract owner can set supported tokens.

VaultManager

Definition: Manages the rebalancing of vaults.

Functions:

rebalanceVault: Rebalances assets across providers within a vault.

Privileged Roles:

DEFAULT_ADMIN_ROLE: Full administrative access.

EXECUTOR_ROLE: Role allowed to execute rebalancing operations.

VaultRebalancerV1

Definition: An implementation vault that handles pooled single-sided asset lending strategies for

yield generation.

Functions:

rebalance: Rebalances assets across providers.

Attributes:

Inherits attributes and functions from InterestVaultV1.

Attributes

Tokens:

name: The name of the token-shares managed in the vault.

symbol: The symbol of the token-shares managed in the vault.

decimals: The number of decimals used to get user representation.

totalSupply: The total supply of token-shares in the vault.

balanceOf: The balance of token-shares held by a user.

Providers: Various yield-generating providers like AaveV3Arbitrum.

Functions to interact with providers include deposit, withdraw, getDepositBalance,

getDepositRateFor, getOperator, and getProviderName.

Privileged Roles

DEFAULT_ADMIN_ROLE: Complete control over the system, including setting active providers,

deposit limits, treasury, and withdrawal fees.

REBALANCER_ROLE: Authorized to perform rebalancing of assets across providers.

EXECUTOR_ROLE: Allowed to execute rebalancing operations.

Owner: In InterestLocker, the owner can set supported tokens for locking.

This structured system ensures secure and efficient management of user deposits, yield generation

through multiple providers, and controlled access for administrative tasks.

6

Risks

block.number means different things on different L2s.

Scope Definition and Security Guarantees: The audit does not cover all code in the repository.

Contracts outside the audit scope may introduce vulnerabilities, potentially impacting the overall

security due to the interconnected nature of smart contracts.

Dependency on External Logic for Implemented Logic: The implemented InterestVaultV1

logic highly depends on external contracts not covered by the audit. This reliance introduces

risks if these external contracts are compromised or contain vulnerabilities, affecting the audited

project's integrity.

Interactions with External DeFi Protocols: Dependence on external DeFi protocols inherits their

risks and vulnerabilities. This might lead to direct financial losses if these protocols are exploited,

indirectly affecting the audited project.

7

Findings

Vulnerability Details

F-2024-3983 - Fee-on-Transfer Accounting-Related Issues - Medium

Description: The function below transfer funds from the caller to the receiver via

safeTransferFrom(), but do not ensure that the actual number of

tokens received is the same as the input amount to the transfer. If the

token is a fee-on-transfer token, the balance after the transfer will be

smaller than expected, leading to accounting issues. Even if there are

checks later, related to a secondary transfer, an attacker may be able to

use latent funds (e.g. mistakenly sent by another user) in order to get a

free credit. One way to address this problem is to measure the balance

before and after the transfer, and use the difference as the amount, rather

than the stated amount.

Path: ./contracts/InterestLocker.sol

106: IERC20(token).safeTransferFrom(msg.sender, address(this), amount);

Assets:
contracts/InterestLocker.sol [https://github.com/REBALANCE-

Finance/lending-contracts]

Status: Accepted

Classification

Impact: 3/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: To mitigate potential vulnerabilities and ensure accurate accounting with

fee-on-transfer tokens, modify your contract's token transfer logic to

measure the recipient's balance before and after the transfer. Use this

8

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/068fda08-d9e5-45ae-a73b-99b26f467c7a

observed difference as the actual transferred amount for any further logic

or calculations.

Resolution: This issue is acknowledged because the Rebalance team commented that

they won't use any Fee-on-Transfer (FoT) tokens in the InterestLocker

contract.

9

Observation Details

F-2024-3984 - Missing checks for `address(0)` - Info

Description: In Solidity, the Ethereum address

0x00 is known as the

"zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. The Missing zero address control issue

arises when a Solidity smart contract does not properly check or prevent

interactions with the zero address, leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

providerManager = IProviderManager(providerManager);

Assets:
contracts/providers/arbitrum/CompoundV3Arbitrum.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

contracts/providers/arbitrum/LodestarArbitrum.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: It is strongly recommended to implement checks to prevent the zero

address from being set during the initialization of contracts. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Resolution: The finding was fixed in the commit 1c51d62 by the Rebalance team after

zero address checks were implemented.

10

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/58b97af0-cb16-4796-a90c-8bf7e78fc5fb

F-2024-3985 - Use `Ownable2Step` rather than `Ownable` - Info

Description: Ownable2Step and Ownable2StepUpgradeable prevent the contract

ownership from mistakenly being transferred to an address that cannot

handle it (e.g. due to a typo in the address), by requiring that the recipient

of the owner permissions actively accept via a contract call of its own.

contract InterestLocker is Ownable {

Assets:
contracts/InterestLocker.sol [https://github.com/REBALANCE-

Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: Consider using Ownable2Step or Ownable2StepUpgradeable from

OpenZeppelin Contracts to enhance the security of your contract

ownership management. These contracts prevent the accidental transfer

of ownership to an address that cannot handle it, such as due to a typo,

by requiring the recipient of owner permissions to actively accept

ownership via a contract call. This two-step ownership transfer process

adds an additional layer of security to your contract's ownership

management

Resolution: The finding was fixed in the commit f782d87 by the Rebalance team with

using Ownable2Step.

11

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/c7f3bb08-ab04-4ad0-8346-6a5198ec1a2d
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3d7a93876a2e5e1d7fe29b5a0e96e222afdc4cfa/contracts/access/Ownable2Step.sol#L31-L56
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/25aabd286e002a1526c345c8db259d57bdf0ad28/contracts/access/Ownable2StepUpgradeable.sol#L47-L63

F-2024-3986 - Cache State Variable Array Length In For Loop - Info

Description: Failing to cache the array length when iterating through arrays in Solidity

can have significant performance and gas cost implications. In Solidity,

array lengths can change during execution due to external calls or storage

modifications. When the array length is not cached before entering a loop,

it is recomputed with each iteration, leading to unnecessary gas

consumption.

for (uint i = 0; i < _tokens.length; i++) {

for (uint256 i = 0; i < _providers.length; i++) {

Assets:
contracts/InterestLocker.sol [https://github.com/REBALANCE-

Finance/lending-contracts]

contracts/abstracts/InterestVaultV1.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: To enhance performance and reduce gas costs, cache the array length

before entering a for loop in Solidity. This approach prevents repeated

computation of the array length and mitigates the risk of reentrancy

attacks due to array length changes during loop execution.

Resolution: The finding was fixed in the commit 1e50eb0 by the Rebalance team with

caching array length.

12

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/92d2b799-e78c-4fb9-a7bf-fdfbf064c60d

F-2024-3987 - Custom Errors in Solidity for Gas Efficiency - Info

Description: Starting from Solidity version 0.8.4, the language introduced a feature

known as "custom errors". These custom errors provide a way for

developers to define more descriptive and semantically meaningful error

conditions without relying on string messages. Prior to this version,

developers often used the require statement with string error messages

to handle specific conditions or validations. However, every unique string

used as a revert reason consumes gas, making transactions more

expensive.

Custom errors, on the other hand, are identified by their name and the

types of their parameters only, and they do not have the overhead of

string storage. This means that, when using custom errors instead of

require statements with string messages, the gas consumption can be

significantly reduced, leading to more gas-efficient contracts.

require(borrowRateMantissa <= 0.0005e16, "RATE_TOO_HIGH")

Assets:
contracts/libraries/LibCompoundV2.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: It is recommended to use custom errors instead of revert strings to reduce

gas costs, especially during contract deployment. Custom errors can be

defined using the error keyword and can include dynamic information.

Resolution: The finding was fixed in the commit de7f83f by the Rebalance team by

using custom errors instead of require statements.

13

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/8b99cc1c-a820-42f8-855a-a56d0986f258

F-2024-3988 - Unused Error Definition - Info

Description: The error error SiloArbitrum__AssetsZero(); is declared, but never

used.

This leaves redundant logic in code.

Assets:
contracts/providers/arbitrum/SiloArbitrum.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: Unused error definitions should be removed from the contract, and if

needed, consolidated into a separate file to avoid duplication.

Resolution: The finding was fixed in the commit 19d2247 by the Rebalance team with

removing unused error definitions.

14

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/79432de0-ae5d-4fd2-b070-14c32a7bd6ce

F-2024-3989 - Optimization of Loop Control for Early Termination -

Info

Description: The identified issue is a common inefficiency in programming related to

loop control during search operations. In the current implementation, loops

are designed to traverse through the entire dataset (like arrays or lists)

even after the required condition has been met or the target element has

been found. This lack of early termination results in unnecessary

processing and can lead to increased execution times, particularly in large

datasets. The issue is not about the correctness of the function but its

efficiency, as continuing the loop after meeting the required condition is

redundant and wastes computational resources.

 for (uint i = 0; i < _tokens.length; i++) {

 if (_tokens[i] == token) {

 isValid = true;

Assets:
contracts/InterestLocker.sol [https://github.com/REBALANCE-

Finance/lending-contracts]

contracts/abstracts/InterestVaultV1.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: To optimize such functions, it is recommended to incorporate an early exit

mechanism within the loop. This can be achieved by introducing a break

statement (or an equivalent control structure) immediately after the

condition is satisfied or the target element is located.

Resolution: The finding was fixed in the commit bda7d1a by the Rebalance team with

a breaking loop after the condition is satisfied.

15

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/87748b26-8d2b-4811-82e5-df3ee48915b3

F-2024-3990 - Avoid Using State Variables Directly in `emit` for Gas

Efficiency - Info

Description: In Solidity, emitting events is a common way to log contract activity and

changes, especially for off-chain monitoring and interfacing. However,

using state variables directly in emit statements can lead to increased

gas costs. Each access to a state variable incurs gas due to storage

reading operations. When these variables are used directly in emit

statements, especially within functions that perform multiple operations,

the cumulative gas cost can become significant. Instead, caching state

variables in memory and using these local copies in emit statements can

optimize gas usage.

emit FeesCharged(treasury, assets

treasury can be cached here.

Assets:
contracts/VaultRebalancerV1.sol [https://github.com/REBALANCE-

Finance/lending-contracts]

contracts/abstracts/InterestVaultV1.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: To optimize gas efficiency, cache state variables in memory when they are

used multiple times within a function, including in emit statements.

Resolution: The finding was fixed in the commit 6eeb30a by the Rebalance team with

caching state variables before using them in an emit statement.

16

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/1526f0d5-c1d7-4ffc-97b7-f2d524f6603f

F-2024-3991 - Unneeded initializations of uint256 and bool variable

to 0/false - Info

Description: In Solidity, it is common practice to initialize variables with default values

when declaring them. However, initializing uint256 variables to 0 and

bool variables to false when they are not subsequently used in the code

can lead to unnecessary gas consumption and code clutter. This issue

points out instances where such initializations are present but serve no

functional purpose.

for (uint256 i = 0;

Assets:
contracts/InterestLocker.sol [https://github.com/REBALANCE-

Finance/lending-contracts]

contracts/abstracts/InterestVaultV1.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: It is recommended not to initialize integer variables to 0 to and boolean

variables to false to save some Gas.

Resolution: The finding was fixed in the commit cb49d6e by the Rebalance team with

not initializing integer variables to 0.

17

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/ee5f0551-8c35-4d5d-a1d9-19226b5c1570

F-2024-3992 - Event is not properly `indexed` - Info

Description: Index event fields make the field more quickly accessible to off-chain tools

that parse events. This is especially useful when it comes to filtering

based on an address. However, note that each index field costs extra gas

during emission, so it's not necessarily best to index the maximum allowed

per event (three fields). Where applicable, each event should use three

indexed fields if there are three or more fields, and gas usage is not

particularly of concern for the events in question. If there are fewer than

three applicable fields, all of the applicable fields should be indexed.

Path: ./contracts/InterestLocker.sol

45: event TokensLocked(

46: uint256 lockId,

47: address user,

48: address token,

49: uint256 amount,

50: uint256 duration

51:);

52: event TokensUnlocked(

53: uint256 lockId,

54: address user,

55: address token,

56: uint256 amount

57:);

Assets:
contracts/InterestLocker.sol [https://github.com/REBALANCE-

Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: Enhance smart contract efficiency post-deployment by utilizing indexed

events. This approach aids in efficiently tracking contract activities,

significantly contributing to the reduction of gas costs.

Resolution: The finding was fixed in the commit eff5f8f by the Rebalance team with

indexing the event parameters.

18

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/4b2a7a92-b2ed-4acd-8e19-f4f6eebfdde6
https://ethereum.stackexchange.com/questions/40396/can-somebody-please-explain-the-concept-of-event-indexing

F-2024-3993 - Inefficient Use of String Parameter in Internal

Function - Info

Description: The _checkProvidersBalance function is designed to accept a string

parameter method, which it uses to dynamically generate a function

signature for querying the balance of multiple providers. However, this

function is only called by the totalAssets function with the hardcoded

value "getDepositBalance". This design incurs unnecessary gas costs

due to the overhead of encoding and decoding the method string at

runtime.

 function _checkProvidersBalance(

 string memory method

) internal view returns (uint256 assets) {

 bytes memory data = abi.encodeWithSignature(

 string(abi.encodePacked(method, "(address,address)")),

Assets:
contracts/abstracts/InterestVaultV1.sol

[https://github.com/REBALANCE-Finance/lending-contracts]

Status: Fixed

Recommendations

Remediation: Refactor the _checkProvidersBalance function to remove the string

parameter and directly use the "getDepositBalance" method within

the function. This will optimize gas usage by eliminating the need for

dynamic string handling.

function _checkProvidersBalance() internal view returns (uint256 assets) {

 bytes memory data = abi.encodeWithSignature(

 string(abi.encodePacked("getDepositBalance(address,address)")),

Resolution: The finding was fixed in the commit d9ac96c by the Rebalance team after

the code was refactored regarding the given recommendation.

19

https://portal.hacken.io/App/Projects/Details/0cb95012-bb66-4410-b8fd-d75544ee2f64/Finding/b1dbd21f-6e46-4d67-9ffe-833d8369b8ca

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

20

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

21

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/REBALANCE-Finance/lending-contracts

Commit dd4033dad8d77595565f8fdfd510d83831bb7377

Whitepaper N/A

Requirements N/A

Technical Requirements N/A

Contracts in Scope

./contracts/VaultRebalancerV1.sol

./contracts/VaultManager.sol

./contracts/InterestLocker.sol

./contracts/abstracts/VaultPermit.sol

./contracts/abstracts/VaultPausable.sol

./contracts/abstracts/InterestVaultV1.sol

./contracts/libraries/LibCompoundV2.sol

./contracts/providers/ProviderManager.sol

./contracts/providers/arbitrum/DolomiteArbitrum.sol

./contracts/providers/arbitrum/AaveV3Arbitrum.sol

./contracts/providers/arbitrum/LodestarArbitrum.sol

./contracts/providers/arbitrum/RadiantV2Arbitrum.sol

./contracts/providers/arbitrum/SiloArbitrum.sol

./contracts/providers/arbitrum/CompoundV3Arbitrum.sol

22

https://github.com/REBALANCE-Finance/lending-contracts

